概述
数控刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。
CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是DNC系统微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。
数控技术是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。数控一般是采用通用或专用计算机实现数字程序控制,因此数控也称为计算机数控(Computerized Numerical Control),简称CNC。
数控装置主要由输入、处理和输出三个基本部分构成。而所有这些工作都由计算机的系统程序进行合理地组织,使整个系统协调地进行工作。
目前,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。
因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点,能够正确选择刀刃具及切削用量。
常用刀具的种类及特点
数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。
根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具、减震式刀具等。
根据制造刀具所用的材料可分为;:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。
从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。
数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:①刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;②互换性好,便于快速换刀;③寿命高,切削性能稳定、可靠;④刀具的尺寸便于调整,以减少换刀调整时间;⑤刀具应能可靠地断屑或卷屑,以利于切屑的排除;⑥系列化、标准化,以利于编程和刀具管理。
刀具的选择
刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。
选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。
在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。
在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具迅速、准确地装到机床主轴或刀库上去。
编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前中国的加工中心采用TSG工具系统,其刀柄有直柄(3种规格)和锥柄(4种规格)2种,共包括16种不同用途的刀柄。
在经济型数控机床的加工过程中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工步骤;③粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。
加工过程中切削用量的确定
合理选择切削用量的原则是:粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。具体要考虑以下几个因素:
①切削深度t。在机床、工件和刀具刚度允许的情况下,t就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的精加工余量可略小于普通机床。
②切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控机床的加工过程中,一般L的取值范围为:L=(0.6~0.9)d。
③切削速度v。提高v也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。随着v的增大,刀具耐用度急剧下降,故v的选择主要取决于刀具耐用度。另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚30CrNi2MoVA时,v可采用8m/min左右;而用同样的立铣刀铣削铝合金时,v可选200m/min以上。
④主轴转速n(r/min)。主轴转速一般根据切削速度v来选定。计算公式为:v=∏nd/1000。数控机床的控制面板上一般备有主轴转速修调(倍率)开关,可在加工过程中对主轴转速进行整倍数调整。
⑤进给速度vF。vF应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。vF的增加也可以提高生产效率。加工表面粗糙度要求低时,vF可选择得大些。在加工过程中,vF也可通过机床控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。
随着数控机床在生产实际中的广泛应用,量化生产线的形成,数控编程已经成为数控加工中的关键问题之一。在数控程序的编制过程中,要在人机交互状态下即时选择刀具和确定切削用量。因此,编程人员必须熟悉刀具的选择方法和切削用量的确定原则,从而保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水平。
编程
通常数控编程可分为两种情况:手动编程与自动编程。
对于外形比较简单的(例如数控车床车简单内外轮廓,数控铣床铣平面等)可用手动编程,这种方式比较简单,很容易掌握,适应性较大。适用于中等复杂程度程序、计算量不大的零件编程,对机床操作人员来讲必须掌握。而自动编程就比较复杂了,一般用于几何形状比较复杂的零件,计算量比较大,人力难以完成的零件。常用的自动编程软件有:UG、Master、CAM、catia等。
发展趋势
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,对国际民生的一些重要行业国防、汽车等的发展起着越来越重要的作用,这些行业装备数字化已是现代发展的大趋势,如:桥式三、五坐标高速数控龙门铣床、龙门移动式五坐标AC摆角数控龙门铣床、龙门移动式三坐标数控龙门铣床等。
高速化发展
随着数控系统核心处理器性能的进步,目前高速加工中心进给速度最高可达80m/min,空运行速度可达100m/min左右。世界上许多汽车厂,包括中国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3小时,在普通铣床加工需8小时。n
由于机构各组件分工的专业化,在专业主轴厂的开发下,主轴高速化日益普及。过去只用于汽车工业高速化的机种(每分钟1.5万转以上的机种),已成为必备的机械产品要件。
精密化发展
随着伺服控制技术和传感器技术的进步,在数控系统的控制下,机床可以执行亚微米级的精确运动。在加工精度方面,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
开放化发展
由于计算机硬件的标准化和模块化,以及软件模块化,开放化技术的日益成熟,数控技术开始进入开放化的阶段。开放式数控系统有更好的通用性、柔性、适应性、扩展性。美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和技术规范的制定,预示了数控技术的一个新的变革时期的来临。中国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。
复合化发展
随着产品外观曲线的复杂化致使模具加工技术必须不断升级,对数控系统提出了新的需求。机床五轴加工、六轴加工已日益普及,机床加工的复合化已是不可避免的发展趋势。
新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。
数控车床的选用数控车床又称为CNC车床,即计算机数字控制车床。数控机床是集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品。是机械制造设备中具有高精度、高效率、高自动化和高柔性化,加工质量稳定可靠等优点的工作母机。
数控机床的技术水平高低及其在金属切削加工机床产量和总拥有量的百分比是衡量一个国家国民经济发展和工业制造整体水平的重要标志之一。数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置,几十年来一直受到世界各国的普遍重视并得到了迅速的发展。
数控车床、车削中心,是一种高精度、高效率的自动化机床。它具有广泛的加工艺性能,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹。具有直线插补、圆弧插补各种补偿功能,并在复杂零件的批量生产中发挥了良好的经济效果。
发展情况
硬件技术
随着集成电路及计算机技术的迅猛发展,给数控硬件技术的更新换代注入新的活力,现代数控系统普遍采用超大规模集成电路(VLSI)、专用芯片(ASIC)及数字信号处理(DSP)技术。
在电气装联上广泛采用表面安装(SMT)、三维高密度(three dimensional high density)技术,极大地提高系统的可靠性。高速高性能存储技术,比如闪烁存储(flash memory),移动存储(PCMCIA card)等极大地方便用户。薄膜晶体管液晶显示器(TFTLCD)技术使得显示装置趋于平板化,更便于机电一体化安装并改善人机界面。作为数控系统核心的处理器广泛采用“位以上的高速RISC CPU,保证高速、高精度的数控加工。
开放式发展
对于开放式结构至今没有一致性的定义。
某些用户认为开放式表示能够接受当地使用的通信协议;而另一些用户认为开放式意味着所有控制器操作界面完全一致;对机床应用工程师而言,开放式意味着对刀架移动、传感器和逻辑控制有标准的输入/输出接口;对大公司和大学的研究工程师来说,开放式意味着以上这些均来自随即拿来就用的积木块。由于来自最终用户和集成商(机床厂)的压力,开放式结构的开发工作正在向前发展并将持续下去。一个积极成果即是基于PC的CNC,即PC-based。
实时操作
严格意义上说,数控控制软件中包含着实时操作系统的思想,例如任务调度、存储器管理、中断处理等,但这种技术是隐含的,是和数控应用程序比如插补,伺服、译码等混合的。每一个数控系统都是独特的,不透明的。
这种情况对于最终用户和系统集成商而言带来诸多不便。在开放式数控呼声日益高涨的今天,研究实时操作系统在CNC软件中的应用是顺理成章的事。特别是嵌入式实时操作系统的技术发展迅猛,这对于数控控制软件的开发将产生革命性的影响。选择一个合适的商用嵌入式实时操作系统,将插补、伺服、译码、数据处理等数控应用软件往上“挂”,最终移植到一个硬件环境中去,形成最终使用户满意的数控系统,也就是个性化的CNC系统,这将是开放式数控的主要方向。



















