原则
线性分形又称为自相似分形。自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科赫曲线(Koch snowflake)、谢尔宾斯基地毯(Sierpinski carpet)等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。
这里再进一步介绍分形的分类,根据自相似性的程度,分形可以分为有规分形和无规分形,有规分形是指具体有严格的自相似性,即可以通过简单的数学模型来描述其相似性的分形,比如三分康托集、Koch曲线等;无规分形是指具有统计学意义上的自相似性的分形,比如曲折连绵的海岸线,漂浮的云朵等。
分维作用
分维,又称分形维或分数维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。
在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?
显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(Hausdorff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是自然数,也可以是正有理数或正无理数,称为豪斯道夫维数。
记作Df,一般的表达式为:K=L^Df,也作K=(1/L)^(-Df),取自然对数并整理得Df=lnK/lnL,其中L为某客体沿其每个独立方向皆扩大的倍数,K为得到的新客体是原客体的倍数。Df在一般情况下不一定是自然数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维,海岸线的长度就确定了。
意义
上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。
中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。
分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。
应用
分形理论在描述土壤等不规则非均质且具有自相似特征的复杂几何形体方面有其独特的优势,利用分形维数可以直观的定量表征土壤特性及其相关关系,科学而有效的描述土地利用及其空间形态。
在前人研究的基础上,系统地综述了分形理论在土壤学中应用的研究进展,从分形理论在描述土壤粒径分布和土壤孔隙等土壤物理性质方面的应用、土壤分形特征与土壤特性及土地利用之间的响应关系、定量表征土壤特性的空间变异和模拟土壤物理水分特征参数等方面进行总结和评述,并结合现已展开的工作,对分形理论在土壤学中应用的相关研究领域进行展望,以期在探究利用分形维数表征土壤特性方面取得新突破。



















