角动量守恒定律

角动量守恒定律

物理定律
一颗粒相对原点的角动量L=rxP=rxmv. 这里r是颗粒到原点的距离;P=mv是它的线性动量。而x表示向量积。颗粒系统的角动量等于单个颗粒角动量的总和。”一个没有受到净外力矩作用的闭合系统,它的角动量是不变的。“这就是角动量守恒定律。 角动量守恒定律是物理和自然界的一条重要定律。它在物理和工程中都得到了很广泛的应用。
  • 中文名:角动量守恒定律
  • 外文名:law of conservation of angular momentum
  • 别名:
  • 表达式:
  • 提出者:
  • 适用领域:物理
  • 本质:物理定律
  • 研究者:W.泡利
  • 发现时间:1931年
  • 证明时间:1956年

定理推广

物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。

一孤立质点系统,如不受外力或外界场的作用,质点之间的内力服从牛顿第三定律(见牛顿运动定律)Fij=-Fij(图2)。内力系对固定点O的主矩,质点系统对O点的角动量守恒。即常矢量决定于运动起始条件。如质点系统受到的外力系对某一固定轴之矩的代数和为零,则质点系统对此轴的角动量守恒。

角动量守恒是参照系转动时势能不变性的结果,如势能U 仅取决于两质点间的距离大小,而和其方向无关,UU(|ri-rj|),则参照系统转动时U是不变量。此时质点之间的相互作用力必通过两质点连线,即与ri-rj矢量共线,而且Fij=-Fij,这就保证了角动量守恒。由此可见,角动量守恒反映了空间各向同性。

角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,如能量守恒定律、动量守恒定律和角动量守恒定律等,W.泡利于1931年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。

定理定义

角动量的定义(经典力学用)

转动物体的转动惯量(rotational inertia) 和角速度(angular velocity) 的乘积叫做它的角动量。nn角动量在物理学中是与物体到原点的位移和动量相关的物理量,在经典力学中表示为到原点的位角动量移和动量的叉积。角动量是矢量。

验证推导

  角动量守恒定律

  角动量守恒定律(law of conservation of angular momentum) 物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。

发展简史

反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一,开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。

定理意义

角动量守恒定律是物理和自然界的一个重要定律,它在物理和工程等许多方面都有广泛的应用。例如:当滑冰者手臂收缩时,自我旋转滑冰者的转动速度就会加快。用角动量守恒定律也可解析中子星有很高的转动速率等。

物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。如一质量为 m的质点受指向固定中心O的向心力F的作用(图1),因力FO点的力矩为零,根据牛顿第二定律(见牛顿运动定律)可推得质点对O点的角动量守恒,Lo=r×mv=常矢量,此常矢量决定于运动的起始条件,r为质点对于O点的矢径,v为质点的速度。如将太阳看成固定中心, 行星看成质点,则角动量守恒表明行星轨道必在一平面上。矢径在相等的时间内扫过的面积相等,这就是开普勒行星运动三定律(见开普勒定律)之一。

一孤立质点系统,如不受外力或外界场的作用,质点之间的内力服从牛顿第三定律(见牛顿运动定律)Fij=-Fij(图2)。内力系对固定点O的主矩

,质点系统对O点的角动量守恒。即

常矢量决定于运动起始条件。如质点系统受到的外力系对某一固定轴之矩的代数和为零,则质点系统对此轴的角动量守恒。

角动量守恒是参照系转动时势能不变性的结果,如势能U 仅取决于两质点间的距离大小,而和其方向无关,UU(|ri-rj|),则参照系统转动时U是不变量。此时质点之间的相互作用力必通过两质点连线,即与ri-rj矢量共线,而且Fij=-Fij,这就保证了角动量守恒。由此可见,角动量守恒反映了空间各向同性。

角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,如能量守恒定律、动量守恒定律和角动量守恒定律等,W.泡利于1931年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。

相关词条

相关搜索

其它词条