混淆矩阵

混淆矩阵

用于监督学习的可视化工具
在人工智能中,混淆矩阵(confusionmatrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。混淆矩阵的每一列代表了地面参考验证信息,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量;混淆矩阵的每一行代表了遥感数据的分类信息,每一行中的数值等于遥感分类像元在地表真实像元相应类别中的数量。
    中文名:混淆矩阵 外文名:Confusion Matrix 定义: 用于:监督学习 性质:可视化工具

基本内容

准确率、精确率(查准率)、召回率(查全率)、F1值、ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切。

在图像精度评价中,主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。混淆矩阵的每一列代表了地面参考验证信息,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量;混淆矩阵的每一行代表了遥感数据的分类信息,每一行中的数值等于遥感分类像元在地表真实像元相应类别中的数量。

相关词条

相关搜索

其它词条