数字黑洞

数字黑洞

数学名词
黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。数字黑洞运算简单,结论明了,易于理解,故人们乐于研究。但有些证明却不那么容易。黑洞数又称陷阱数,是类具有奇特转换特性的整数。任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。
    中文名:数字黑洞 外文名: 适用领域: 所属学科: 英文名:Digital black hole 事例:123数字黑洞 特点:数学陷阱 领域:数学

运算类型

西绪福斯黑洞(123数字黑洞)

数学中的123就跟英语中的ABC一样平凡和简单。然而,按以下运算顺序,

就可以观察到这个最简单的黑洞值:设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,

例如:1234567890,

偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5个。

奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5个。

总:数出该数数字的总个数,本例中为10个。

新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。

重复:将新数5510按以上算法重复运算,可得到新数:134。

结论

对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞;比起123黑洞来,6174黑洞对首个设定的数值有所限制,但是,从实战的意义上来考虑,6174黑洞在信息战中的运用更具有应用意义。

任意找一个3的倍数,先把这个数字每一个数位上的数都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数再立方,求和,重复运算下去,就得到一个固定的数T=______,请分析其原理。

过程:

T=153

数字黑洞问题是无法与哥德巴赫猜想相比,懂一点数论基础,就可以证明它。

这个数字黑洞问题早已经不是难题了,但要是题目严格证明起来1000个汉字以内是不够的,还是麻烦!只是麻烦,但不是难题

提供这个题的证明原理:

①如果一个数能被9整除,那么这个数所有位上的数字之和是9的倍数。

如;81与8+1,144与1+4+4。

②如果一个数能被3整除,那么这个数所有位上的数字立方之和是9的倍数。

利用(a+b)^3=a^3+3(a+b)ab+b^3及①就可以证明②。

③检验所有较小的数是否都有这个结论成立,(不论多少个数,它总归是有限个,不超过3×9×9×9)

④对于较大数,把它按照,法则运算一次,它相当变小,看看是否落在③的范围内……经过有限次运算,它落在③的范围内。

⑤它落在③的范围内,本题得证。

相关词条

相关搜索

其它词条