機床

機床

制造機器的機器
機床(machine tool)是指制造機器的機器,亦稱工作母機或工具機,習慣上簡稱機床。一般分為金屬切削機床、鍛壓機床和木工機床等。現代機械制造中加工機械零件的方法很多:除切削加工外,還有鑄造、鍛造、焊接、沖壓、擠壓等,但凡屬精度要求較高和表面粗糙度要求較細的零件,一般都需在機床上用切削的方法進行最終加工。“高檔數控機床與基礎制造裝備重大專項”是《國家中長期科學和技術發展規劃綱要(2006~2020)》确定的16個國家科技重大專項之一。該概念主要包含:各類機床研發及制造企業。
    中文名:機床 外文名:machine tool 用途: 别名:工作母機或工具機 含義:指制造機器的機器

發展曆史

十五世紀的機床雛形,由于制造鐘表和武器的需要,出現了鐘表匠用的螺紋車床和齒輪加工機床,以及水力驅動的炮筒镗床。1501年左右,意大利人列奧納多·達芬奇曾繪制過車床、镗床、螺紋加工機床和内圓磨床的構想草圖,其中已有曲柄、飛輪、頂尖和軸承等新機構。中國明朝出版的《天工開物》中也載有磨床的結構,用腳踏的方法使鐵盤旋轉,加上沙子和水來剖切玉石。

工業革命導緻了各種機床的産生和改進。十八世紀的工業革命推動了機床的發展。1774年,英國人威爾金森(全名約翰·威爾金森)發明了較精密的炮筒镗床。次年,他用這台炮筒镗床镗出的汽缸,滿足了瓦特蒸汽機的要求。為了镗制更大的汽缸,他又于1775年制造了一台水輪驅動的汽缸镗床,促進了蒸汽機的發展。從此,機床開始用蒸汽機通過曲軸驅動。

1797年,英國人莫茲利創制成的車床由絲杠傳動刀架,能實現機動進給和車削螺紋,這是機床結構的一次重大變革。莫茲利也因此被稱為“英國機床工業之父”。

19世紀,由于紡織、動力、交通運輸機械和軍火生産的推動,各種類型的機床相繼出現。1817年,英國人羅伯茨創制龍門刨床;1818年美國人惠特尼(全名伊萊·惠特尼)制成卧式銑床;1876年,美國制成萬能外圓磨床;1835和1897年又先後發明滾齒機和插齒機。

工業技術發展的中心,從十九世紀起就悄悄從英國移向美國。在把英國的技術聲望奪過去的人中,惠特尼堪稱佼佼者。惠特尼聰穎過人,具有遠見卓識,他率先研究出了作為大規模生産的可更換部件的系統。至今還很活躍的惠特尼工程公司,早在19世紀四十年代就研制成功了一種轉塔式六角車床。這種車床是随着工件制做的複雜化和精細化而問世的,在這種車床中,裝有一個絞盤,各種需要的刀具都安裝在絞盤上,這樣,通過旋轉固定工具的轉塔,就可以把工具轉到所需的位置上。

随着電動機的發明,機床開始先采用電動機集中驅動,後又廣泛使用單獨電動機驅動。

二十世紀初,為了加工精度更高的工件、夾具和螺紋加工工具,相繼創制出坐标镗床和螺紋磨床。同時為了适應汽車和軸承等工業大量生産的需要,又研制出各種自動機床、仿形機床、組合機床和自動生産線。

1900年進入精密化時期。19世紀末到20世紀初,單一的車床已逐漸演化出了銑床、刨床、磨床、鑽床等等,這些主要機床已經基本定型,這樣就為20世紀前期的精密機床和生産機械化和半自動化創造了條件。

在20世紀的前20年内,人們主要是圍繞銑床、磨床和流水裝配線展開的。由于汽車、飛機及其發動機生産的要求,在大批加工形狀複雜、高精度及高光潔度的零件時,迫切需要精密的、自動的銑床和磨床。由于多螺旋線刀刃銑刀的問世,基本上解決了單刃銑刀所産生的振動和光潔度不高而使銑床得不到發展的困難,使銑床成為加工複雜零件的重要設備。

被世人譽為“汽車之父”的福特提出:汽車應該是“輕巧的、結實的、可靠的和便宜的”。為了實現這一目标,必須研制高效率的磨床,為此,美國人諾頓于1900年用金剛砂和剛玉石制成直徑大而寬的砂輪,以及剛度大而牢固的重型磨床。磨床的發展,使機械制造技術進入了精密化的新階段。

1920年進入半自動化時期。在1920年以後的30年中,機械制造技術進入了半自動化時期,液壓和電氣元件在機床和其他機械上逐漸得到了應用。1938年,液壓系統和電磁控制不但促進了新型銑床的發明,而且在龍門刨床等機床上也推廣使用。30年代以後,行程開關——電磁閥系統幾乎用到各種機床的自動控制上了。

1950年進入自動化時期。第二次世界大戰以後,由于數控和群控機床和自動線的出現,機床的發展開始進入了自動化時期。數控機床是在電子計算機發明之後,運用數字控制原理,将加工程序、要求和更換刀具的操作數碼和文字碼作為信息進行存貯,并按其發出的指令控制機床,按既定的要求進行加工的新式機床。

世界第一台數控機床(銑床)誕生(1951年)。數控機床的方案,是美國的帕森斯(全名約翰·帕森斯)在研制檢查飛機螺旋槳葉剖面輪廓的闆葉加工機時向美國空軍提出的。在麻省理工學院的參加和協助下,終于在1949年取得了成功。1951年,他們正式制成了第一台電子管數控機床樣機,成功地解決了多品種小批量的複雜零件加工的自動化問題。以後,一方面數控原理從銑床擴展到銑镗床、鑽床和車床,另一方面,則從電子管向晶體管、集成電路方向過渡。1958年,美國研制成能自動更換刀具,以進行多工序加工的加工中心。

世界第一條數控生産線誕生于1968年。英國的毛林斯機械公司研制成了第一條數控機床組成的自動線。不久,美國通用電氣公司提出了“工廠自動化的先決條件是零件加工過程的數控和生産過程的程控”。于是,到1970年代中期,出現了自動化車間,自動化工廠也已開始建造。1970年至1974年,由于小型計算機廣泛應用于機床控制,出現了三次技術突破。第一次是直接數字控制器,使一台小型電子計算機同時控制多台機床,出現了“群控”;第二次是計算機輔助設計,用一支光筆進行設計和修改設計及計算程序;第三次是按加工的實際情況及意外變化反饋并自動改變加工用量和切削速度,出現了自适控制系統的機床。

經過100多年的風風雨雨,機床的家族已日漸成熟,真正成了機械領域的“工作母機”。

常見類型

車床

1、古代滑輪、弓形杆的“弓車床”。

早在古埃及時代,人們已經發明了将木材繞着它的中心軸旋轉時用刀具進行車削的技術。起初,人們是用兩根立木作為支架,架起要車削的木材,利用樹枝的彈力把繩索卷到木材上,靠手拉或腳踏拉動繩子轉動木材,并手持刀具而進行切削。

這種古老的方法逐漸演化,發展成了在滑輪上繞二三圈繩子,繩子架在彎成弓形的彈性杆上,來回推拉弓使加工物體旋轉從而進行車削,這便是“弓車床”。

2、中世紀曲軸、飛輪傳動的“腳踏車床”。

到了中世紀,有人設計出了用腳踏闆旋轉曲軸并帶動飛輪,再傳動到主軸使其旋轉的“腳踏車床”。16世紀中葉,法國有一個叫貝松的設計師設計了一種用螺絲杠使刀具滑動的車螺絲用的車床,可惜的是,這種車床并沒有推廣使用。

3、十八世紀誕生了床頭箱、卡盤

時間到了18世紀,又有人設計了一種用腳踏闆和連杆旋轉曲軸,可以把轉動動能貯存在飛輪上的車床上,并從直接旋轉工件發展到了旋轉床頭箱,床頭箱是一個用于夾持工件的卡盤。

4、英國人莫茲利發明了刀架車床(1797年)

在發明車床的故事中,最引人注目的是一個名叫莫茲利的英國人,因為他于1797年發明了劃時代的刀架車床,這種車床帶有精密的導螺杆和可互換的齒輪。

各種專用車床的誕生為了提高機械化自動化程度。1845年,美國的菲奇發明轉塔車床。1848年,美國又出現回輪車床。1873年,美國的斯潘塞制成一台單軸自動車床,不久他又制成三軸自動車床。20世紀初出現了由單獨電機驅動的帶有齒輪變速箱的車床。由于高速工具鋼的發明和電動機的應用,車床不斷完善,終于達到了高速度和高精度的現代水平。

第一次世界大戰後,由于軍火、汽車和其他機械工業的需要,各種高效自動車床和專門化車床迅速發展。為了提高小批量工件的生産率,1940年代末,帶液壓仿形裝置的車床得到推廣,與此同時,多刀車床也得到發展。1950年代中,發展了帶穿孔卡、插銷闆和撥碼盤等的程序控制車床。數控技術于1960年代開始用于車床,1970年代後得到迅速發展。

車床的分類車床依用途和功能區分為多種類型。

普通車床的加工對象廣,主軸轉速和進給量的調整範圍大,能加工工件的内外表面、端面和内外螺紋。這種車床主要由工人手工操作,生産效率低,适用于單件、小批生産和修配車間。

轉塔車床和回轉車床具有能裝多把刀具的轉塔刀架或回輪刀架,能在工件的一次裝夾中由工人依次使用不同刀具完成多種工序,适用于成批生産。

液壓機床

自動車床能按一定程序自動完成中小型工件的多工序加工,能自動上下料,重複加工一批同樣的工件,适用于大批、大量生産。

多刀半自動車床有單軸、多軸、卧式和立式之分。單軸卧式的布局形式與普通車床相似,但兩組刀架分别裝在主軸的前後或上下,用于加工盤、環和軸類工件,其生産率比普通車床提高3~5倍。

仿形車床能仿照樣闆或樣件的形狀尺寸,自動完成工件的加工循環,适用于形狀較複雜的工件的小批和成批生産,生産率比普通車床高10~15倍。有多刀架、多軸、卡盤式、立式等類型。

立式車床的主軸垂直于水平面,工件裝夾在水平的回轉工作台上,刀架在橫梁或立柱上移動。适用于加工較大、較重、難于在普通車床上安裝的工件,一般分為單柱和雙柱兩大類。

鏟齒車床在車削的同時,刀架周期地作徑向往複運動,用于鏟車銑刀、滾刀等的成形齒面。通常帶有鏟磨附件,由單獨電動機驅動的小砂輪鏟磨齒面。

專門車床是用于加工某類工件的特定表面的車床,如曲軸車床、凸輪軸車床、車輪車床、車軸車床、軋輥車床和鋼錠車床等。

聯合車床主要用于車削加工,但附加一些特殊部件和附件後,還可進行镗、銑、鑽、插、磨等加工,具有“一機多能”的特點,适用于工程車、船舶或移動修理站上的修配工作。

镗床

工廠手工業雖然是相對落後的,但是它卻訓練和造就了許許多多的技工,他們盡管不是專門制造機器的行家裡手,但他們卻能制造各種各樣的手工器具,例如刀、鋸、針、鑽、錐、磨以及軸類、套類、齒輪類、床架類等等,其實機器就是由這些零部件組裝而成的。

最早的镗床設計者——達·芬奇。镗床被稱為“機械之母”。說起镗床,還先得說說達·芬奇。這位傳奇式的人物,可能就是最早用于金屬加工的镗床的設計者。他設計的镗床是以水力或腳踏闆作為動力,镗削的工具緊貼着工件旋轉,工件則固定在用起重機帶動的移動台上。1540年,另一位畫家畫了一幅《火工術》的畫,也有同樣的镗床圖。那時的镗床專門用來對中空鑄件進行精加工。

為大炮炮筒加工而誕生的第一台镗床(威爾金森,1775年)。到了17世紀,由于軍事上的需要,大炮制造業的發展十分迅速,如何制造出大炮的炮筒成了人們亟需解決的一大難題。世界上第一台真正的镗床是1775年由威爾金森發明的。其實,确切地說,威爾金森的镗床是一種能夠精密地加工大炮的鑽孔機,它是一種空心圓筒形镗杆,兩端都安裝在軸承上。

1728年,威爾金森出生在美國,在他20歲時,遷到斯塔福德郡,建造了比爾斯頓的第一座煉鐵爐。因此,人稱威爾金森為“斯塔福德郡的鐵匠大師”。1775年,47歲的威爾金森在他父親的工廠裡經過不斷努力,終于制造出了這種能以罕見的精度鑽大炮炮筒的新機器。有意思的是,1808年威爾金森去世以後,他就葬在自己設計的鑄鐵棺内。

镗床為瓦特的蒸汽機做出了重要貢獻如果說沒有蒸汽機的話,當時就不可能出現第一次工業革命的浪潮。而蒸汽機自身的發展和應用,除了必要的社會機遇之外,技術上的一些前提條件也是不可忽視的,因為制造蒸汽機的零部件,遠不像木匠削木頭那麼容易,要把金屬制成一些特殊形狀,而且加工的精度要求又高,沒有相應的技術設備是做不到的。比如說,制造蒸汽機的汽缸和活塞,活塞制造過程中所要求的外徑的精度,可以從外面邊量尺寸邊進行切削,但要滿足汽缸内徑的精度要求,采用一般加工方法就不容易做到了。

斯密頓是十八世紀最優秀的機械技師。斯密頓設計的水車、風車設備達43件之多。在制作蒸汽機時,斯密頓最感棘手的是加工汽缸。要想将一個大型的汽缸内圓加工成圓形,是相當困難的。為此,斯密頓在卡倫鐵工廠制作了一台切削汽缸内圓用的特殊機床。用水車作動力驅動的這種镗床,在其長軸的前端安裝上刀具,這種刀具可以在汽缸内轉動,以此就可以加工其内圓。由于刀具安裝在長軸的前端,就會出現軸的撓度等問題,所以,要想加工出真正圓形的汽缸是十分困難的。為此,斯密頓不得不多次改變汽缸的位置進行加工。

對于這個難題,威爾金森于1774年發明的镗床起了很大的作用。這種镗床利用水輪使材料圓筒旋轉,并使其對準中心固定的刀具推進,由于刀具與材料之間有相對運動,材料就被镗出精确度很高的圓柱形孔洞。當時、用镗床做出直徑為72英寸的汽缸,誤差不超過六便士硬币的厚度。用現代技術衡量,這是個很大的誤差,但在當時的條件下,能達到這個水平,已經是很不簡單了。

但是,威爾金森的這項發明沒有申請專利保護,人們紛紛仿造它,安裝它。1802年,瓦特也在書中談到了威爾金森的這項發明,并在他的索霍鐵工廠裡進行仿制。以後,瓦特在制造蒸汽機的汽缸和活塞時,也應用了威爾金森這架神奇的機器。原來,對活塞來說,可以在外面一邊量着尺寸,一邊進行切削,但對汽缸就不那麼簡單了,非用镗床不可。當時,瓦特就是利用水輪使金屬圓筒旋轉,讓中心固定的刀具向前推進,用以切削圓筒内部,結果,直徑75英寸的汽缸,誤差還不到一個硬币的厚度,這在當對是很先進的了。

工作台升降式镗床誕生(赫頓,1885年)。在以後的幾十年間,人們對威爾金森的镗床作了許多改進。1885年,英國的赫頓制造了工作台升降式镗床,這已成為了現代镗床的雛型。

銑床

銑床系指主要用銑刀在工件上加工各種表面的機床。通常銑刀旋轉運動為主運動,工件(和)銑刀的移動為進給運動。它可以加工平面、溝槽,也可以加工各種曲面、齒輪等。銑床是用銑刀對工件進行銑削加工的機床。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較複雜的型面,效率較刨床高,在機械制造和修理部門得到廣泛應用。

19世紀,英國人為了蒸汽機等工業革命的需要發明了镗床、刨床,而美國人為了生産大量的武器,則專心緻志于銑床的發明。銑床是一種帶有形狀各異銑刀的機器,它可以切削出特殊形狀的工件,如螺旋槽、齒輪形等。

早在1664年,英國科學家胡克就依靠旋轉圓形刀具制造出了一種用于切削的機器,這可算是原始的銑床了,但那時社會對此沒有做出熱情的反響。在十九世紀四十年代,普拉特設計了所謂林肯銑床。當然,真正确立銑床在機器制造中地位的,要算美國人惠特尼了。

第一台普通銑床(惠特尼,1818年)。1818年,惠特尼制造了世界上第一台普通銑床,但是,銑床的專利卻是英國的博德默(帶有送刀裝置的龍門刨床的發明者)于1839年捷足先“得”的。由于銑床造價太高,所以當時問津者不多。

第一台萬能銑床(布朗,1862年)。銑床沉默一段時間後,又在美國活躍起來。相比之下,惠特尼和普拉特還隻能說是為銑床的發明應用做了奠基性的工作,真正發明能适用于工廠各種操作的銑床的功績應該歸屬美國工程師約瑟夫·布朗。

1862年,美國的布朗制造出了世界上最早的萬能銑床,這種銑床在備有萬有分度盤和綜合銑刀方面是劃時代的創舉。萬能銑床的工作台能在水平方向旋轉一定的角度,并帶有立銑頭等附件。他設計的“萬能銑床”在1867年巴黎博覽會上展出時,獲得了極大的成功。同時,布朗還設計了一種經過研磨也不會變形的成形銑刀,接着還制造了磨銑刀的研磨機,使銑床達到了這樣的水平。

刨床

在發明過程中,許多事情往往是相輔相承、環環相扣的:為了制造蒸汽機,需要镗床相助;蒸汽機發明發後,從工藝要求上又開始呼喚龍門刨床了。可以說,正是蒸汽機的發明,導緻了“工作母機”從镗床、車床向龍門刨床的設計發展。其實,刨床就是一種刨金屬的“刨子”。

加工大平面的龍門刨床(1839年)。由于蒸汽機閥座的平面加工需要,從19世紀初開始,很多技術人員開始了這方面的研究,其中有理查德·羅伯特、理查德·普拉特、詹姆斯·福克斯以及約瑟夫·克萊門特等。他們從1814年開始,在25年的時間内各自獨立地制造出了龍門刨床。這種龍門刨床是把加工物件固定在往返平台上,刨刀切削加工物的一面。但是,這種刨床還沒有送刀裝置,正處在從“工具”向“機械”的轉化過程之中。到了1839年,英國一個名叫博默德的人終于設計出了具有送刀裝置的龍門刨床。

加工小平面的牛頭刨床。另一位英國人内史密斯從1831年起的40年内發明制造了加工小平面的牛頭刨床,它可以把加工物體固定在床身上,而刀具作往返運動。

此後,由于工具的改進、電動機的出現,龍門刨床一方面朝高速切割、高精度方向發展,另一方面朝大型化方向發展。

磨床

磨削是人類自古以來就知道的一種古老技術,舊石器時代,磨制石器用的就是這種技術。以後,随着金屬器具的使用,促進了研磨技術的發展。但是,設計出名副其實的磨削機械還是近代的事情,即使在19世紀初期,人們依然是通過旋轉天然磨石,讓它接觸加工物體進行磨削加工的。

第一台磨床(1864年)。1864年,美國制成了世界上第一台磨床,這是在車床的溜闆刀架上裝上砂輪,并且使它具有自動傳送的一種裝置。過了12年以後,美國的布朗發明了接近現代磨床的萬能磨床。

人造磨石——砂輪的誕生(1892年)。人造磨石的需求也随之興起。如何研制出比天然磨石更耐磨的磨石呢?1892年,美國人艾奇遜試制成功了用焦炭和砂制成的碳化矽,這是一種現稱為C磨料的人造磨石;兩年以後,以氧化鋁為主要成份的A磨料又試制成功,這樣,磨床便得到了更廣泛的應用。

以後,由于軸承、導軌部分的進一步改進,磨床的精度越來越高,并且向專業化方向發展,出現了内圓磨床、平面磨床、滾磨床、齒輪磨床、萬能磨床等等。

鑽床

古代鑽床——“弓辘轳”。鑽孔技術有着久遠的曆史。考古學家現已發現,公元前4000年,人類就發明了打孔用的裝置。古人在兩根立柱上架個橫梁,再從橫梁上向下懸挂一個能夠旋轉的錐子,然後用弓弦纏繞帶動錐子旋轉,這樣就能在木頭石塊上打孔了。不久,人們還設計出了稱為“辘轳”的打孔用具,它也是利用有彈性的弓弦,使得錐子旋轉。

第一台鑽床(惠特沃斯,1862年)。到了1850年前後,德國人馬蒂格諾尼最早制成了用于金屬打孔的麻花鑽。1862年在英國倫敦召開的國際博覽會上,英國人惠特沃斯展出了由動力驅動的鑄鐵櫃架的鑽床,這便成了近代鑽床的雛形。

以後,各種鑽床接連出現,有搖臂鑽床、備有自動進刀機構的鑽床、能一次同時打多個孔的多軸鑽床等。由于工具材料和鑽頭的改進,加上采用了電動機,大型的高性能的鑽床終于制造出來了。

數控機床

是數字控制機床的簡稱,是一種裝有程序控制系統的自動化機床。該控制系統能夠邏輯地處理具有控制編碼或其他符号指令規定的程序,并将其譯碼,從而使機床動作并加工零件的控制單元,數控機床的操作和監控全部在這個數控單元中完成,它是數控機床的大腦。

加工精度高,具有穩定的加工質量;

可進行多坐标的聯動,能加工形狀複雜的零件;

加工零件改變時,一般隻需要更改數控程序,可節省生産準備時間;

機床本身的精度高、剛性大,可選擇有利的加工用量,生産率高(一般為普通機床的3~5倍);

機床自動化程度高,可以減輕勞動強度;

對操作人員的素質要求較高,對維修人員的技術要求更高。

數控機床一般由下列幾個部分組成:

主機,是數控機床的主體,包括機床身、立柱、主軸、進給機構等機械部件。它是用于完成各種切削加工的機械部件。

數控裝置,是數控機床的核心,包括硬件(印刷電路闆、CRT顯示器、鍵盒、紙帶閱讀機等)以及相應的軟件,用于輸入數字化的零件程序,并完成輸入信息的存儲、數據的變換、插補運算以及實現各種控制功能。

驅動裝置,是數控機床執行機構的驅動部件,包括主軸驅動單元、進給單元、主軸電機及進給電機等。它在數控裝置的控制下通過電氣或電液伺服系統實現主軸和進給驅動。當幾個進給聯動時,可以完成定位、直線、平面曲線和空間曲線的加工。

輔助裝置,指數控機床的一些必要的配套部件,用以保證數控機床的運行,如冷卻、排屑、潤滑、照明、監測等。它包括液壓和氣動裝置、排屑裝置、交換工作台、數控轉台和數控分度頭,還包括刀具及監控檢測裝置等。

編程及其他附屬設備,可用來在機外進行零件的程序編制、存儲等。

數控機床加工流程說明

CAD:ComputerAidedDesign,即計算機輔助設計。2D或3D的工件或立體圖設計;

CAM:ComputerAidedMaking,即計算機輔助制造。使用CAM軟體生成G-Code;

CNC:數控機床控制器,讀入G-Code開始加工。

數控機床加工程式說明

CNC程式可分為主程序及副程序(子程序),凡是重覆加工的部份,可用副程序編寫,以簡化主程序的設計。

字元(數值資料)→字語→單節→加工程序。

隻要打開Windows操作系統裡的記事本就可編輯CNC碼,寫好的CNC程式則可用模拟軟體來模拟刀具路徑的正确性。

數控機床基本機能指令說明

所謂機能指令是由位址碼(英文字母)及兩個數字所組成,具有某種意義的動作或功能,可分為七大類,即G機能(準備機能),M機能(輔助機能),T機能(刀具機能),S機能(主軸轉速機能),F機能(進給率機能),N機能(單節編号機能)和H/D機能(刀具補正機能)。

數控機床參考點說明

通常在數控工具機程式編寫時,至少須選用一個參考坐标點來計算工作圖上各點之坐标值,這些參考點我們稱之為零點或原點,常用之參考點有機械原點、回歸參考點、工作原點、程式原點。

機械參考點(Machinereferencepoint):機械參考點或稱為機械原點,它是機械上的一個固定的參考點。

回歸參考點(Referencepoints):在機器的各軸上都有一回歸參考點,這些回歸參考點的位置,以行程監測裝置極限開關預先精确設定,作為工作台及主軸的回歸點。

工作參考點(Workreferencepoints):工作參考點或稱工作原點,它是工作坐标系統之原點,該點是浮動的,由程式設計者依需要而設定,一般被設定于工作台上(工作上)任一位置。

程式參考點(Programreferencepoints):程式參考點或稱程式原點,它是工作上所有轉折點坐标值之基準點,此點必須在編寫程式時加以選定,所以程式設計者選定時須選擇一個方便的點,以利程式之寫作。

鋼制伸縮式導軌防護罩為高品質的2-3mm厚鋼闆冷壓成形而成,根據要求也可以為不鏽鋼的。特殊的表面磨光會使其另外升值。我們可以為所有的機床種類提供相應的導軌防護類型(水平、垂直、傾斜、橫向)。

曲軸機床

曲軸高效專用機床也有它的加工局限性,隻有合理應用合适的加工機床,才能發揮出曲軸加工機床的高效專用性,從而提高工序的加工效率。

1、當曲軸軸頸有沉割槽時,數控内銑機床不能加工;如果曲軸軸頸軸向有沉割槽時,數控高速外銑機床和數控内銑機床均不能加工,但數控車-車拉機床能很方便地加工。

2、當平衡塊側面需要加工時,數控内銑機床應當為首選機床,因為内銑刀盤外圓定位,剛性好,尤其适用于加工大型鍛鋼曲軸;此時不适合用數控車-車拉機床,因為在曲軸的平衡塊側面需要加工的情況下,采用數控車-車拉機床加工,平衡塊側面是斷續切削,且曲軸轉速又很高,在這種工況下,崩刀現象比較嚴重。

3、當曲軸的軸頸無沉割槽,且平衡塊側面不需加工時,原則上幾種機床都能加工。當加工轎車曲軸時,主軸頸采用數控車-車拉機床,連杆頸采用數控高速外銑機床則應成為最佳高效加工選擇;當加工大型鍛鋼曲軸時,則主軸頸和連杆頸均采用數控内銑機床比較合理。

曲軸可以分為體形較大的鍛鋼曲軸和輕量化的轎車曲軸,鍛鋼曲軸軸頸一般無沉割槽,且側面需要加工,餘量較大;轎車曲軸一般軸頸有沉割槽,且側面不需要加工。因此可以得出結論:加工鍛鋼曲軸采用數控内銑機床,加工轎車曲軸主軸頸采用數控車-車拉機床,連杆頸采用數控高速外銑機床是比較合理的高效加工選擇。

鍛壓機床

鍛壓機床是金屬和機械冷加工用的設備,他隻改變金屬的外形狀。鍛壓機床包括卷闆機,剪闆機,沖床,壓力機,液壓機,油壓機,折彎機等。

機床附件的種類有很多,包括柔性風琴式防護罩(皮老虎)、刀具刀片、鋼闆不鏽鋼導軌護罩、伸縮式絲杠護罩、卷簾防護罩、防護裙簾、防塵折布、鋼制拖鍊、工程塑料拖鍊、機床工作燈、機床墊鐵、JR-2型矩形金屬軟管、DGT導管防護套、可調塑料冷卻管、吸塵管、通風管、防爆管、行程槽闆、撞塊、排屑機、偏擺儀、平台花崗石平闆鑄鐵平闆及各種操作件等。[1]

衡量指标

機床本身質量的優劣,直接影響所造機器的質量。衡量一台機床的質量是多方面的,但主要是要求工藝性好,系列化、通用化、标準化程度高,結構簡單,重量輕,工作可靠,生産率高等。具體指标如下:

1、工藝的可能性

工藝的可能性是指機床适應不同生産要求的能力。通用機床可以完成一定尺寸範圍内各種零件多工序加工,工藝的可能性較寬,因而結構相對複雜,适應于單件小批生産。專用機床隻能完成一個或幾個零件的特定工序,其工藝的可能性較窄,适用于大批量生産,可以提高生産率,保證加工質量,簡化機床結構,降低機床成本。

2、精度和表面粗糙度

要保證被加工零件的精度和表面粗糙度,機床本身必須具備一定的幾何精度、運動精度、傳動精度和動态精度。

幾何精度是指機床在不運轉時部件間相互位置精度和主要零件的形狀精度、位置精度。機床的幾何精度對加工精度有重要的影響,因此是評定機床精度的主要指标。

運動精度是指機床在以工作速度運轉時主要零部件的幾何位置精度,幾何位置的變化量越大,運動精度越低。

傳動精度是指機床傳動鍊各末端執行件之間運動的協調性和均勻性。

以上三種精度指标都是在空載條件下檢測的,為全面反映機床的性能,必須要求機床有一定的動态精度和溫升作用下主要零部件的形狀、位置精度。影響動态精度的主要因素有機床的剛度、抗振性和熱變形等。

機床的剛度指機床在外力作用下抵抗變形的能力,機床的剛度越大,動态精度越高。機床的剛度包括機床構件本身的剛度和構件之間的接觸剛度。機床構件本身的剛度主要取決于構件本身的材料性質、截面形狀、大小等。構件之間的接觸剛度不僅與接觸材料、接觸面的幾何尺寸和硬度有關,而且還與接觸面的表面粗糙度、幾何精度、加工方法、接觸面介質、預壓力等因素有關。

機床上出現的振動,可分為受迫振動和自激振動。自激振動是在不受任何外力、激振力幹擾的情況下,由切削過程内部産生的持續振動。在激振力的持續作用下,系統被迫引起的振動為受迫振動。

機床的抗震性和機床的剛度、阻尼特性、質量有關。由于機床的各個零部件熱膨脹系數不同,因而造成了機床各部分不同的變形和相對位移,這種現象叫機床的熱變形。由于熱變形而産生的誤差最大可占全部誤差的70%。

對于機床的動态精度,尚無統一标準,主要通過切削加工典型零件所達到的精度間接的對機床動态精度作出綜合的評價。

3、系列化等程度

機床的系列化、通用化、标準化是密切聯系的,品種系列化是部件通用化和零件标準化的基礎,而部件的通用化和零件的标準化又促進和推動品種系列化工作。

4、機床的壽命

機床結構的可靠性和耐磨性是衡量機床壽命的主要指标。

運動傳動

機床運動

根據在切削過程中所起的作用來區分,切削運動分為主運動和進給運動。

主運動:是形成機床切削速度或消耗主要動力的工作運動。

進給運動:是使工件的多餘材料不斷被去除的工作運動。

切削過程中主運動隻有一個,進給運動可以多于一個。主運動和進給運動可由刀具或工件分别完成,也可由刀具單獨完成。機床的運動除了切削運動外,還有一些實現機床切削過程的輔助工作而必須進行的輔助運動。

機床傳動

機床的傳動機構指的是傳遞運動和動力的機構,簡稱為機床的傳動。

機床的傳動方式按傳動機構的特點分為機械傳動、液壓傳動、電力傳動、氣壓傳動以及以上幾種傳動方式的聯合傳動等。按傳動速度調節變化特點将傳動分為有級傳動和無級傳動。

傳動系統

傳動系統也叫傳動鍊,他有首末兩個端件。首端件又叫主動件,末端件又叫從動件。每一條傳動系統從首端件到末端件都是按一定傳動規律組成,這就是傳動比,以此來保證機床的性能。一般的機床傳動系統按其所擔負運動的性質可分為主運動傳遞系統,進給運動傳遞系統和快速空行程傳動系統三種。對傳動系統圖一般了解即可。

機床分類

1、普通機床:包括普通車床、鑽床、镗床、銑床、刨插床等;

2、精密機床:包括磨床、齒輪加工機床、螺紋加工機床和其他各種精密機床;

3、高精度機床:包括坐标镗床、齒輪磨床、螺紋磨床、高精度滾齒機、高精度刻線機和其他高精度機床等;

4、數控機床:數控機床是數字控制機床的簡稱;

5、按工件大小和機床重量可分為儀表機床、中小型機床、大型機床、重型機床和超重型機床;

6、按加工精度可分為普通精度機床、精密機床和高精度機床;

7、按自動化程度可分為手動操作機床、半自動機床和自動機床;

8、按機床的控制方式,可分為仿形機床、程序控制機床、數控機床、适應控制機床、加工中心和柔性制造系統;

9、按加工方式或加工對象可分為車床、鑽床、镗床、磨床、齒輪加工機床、螺紋加工機床、花鍵加工機床、銑床、刨床、插床、拉床、特種加工機床、鋸床和刻線機等。每類中又按其結構或加工對象分為若幹組,每組中又分為若幹型;

10、按機床的适用範圍,又可分為通用、專門化和專用機床。

專用機床中有一種以标準的通用部件為基礎,配以少量按工件特定形狀或加工工藝設計的專用部件組成的自動或半自動機床,稱為組合機床。

對一種或幾種零件的加工,按工序先後安排一系列機床,并配以自動上下料裝置和機床與機床間的工件自動傳遞裝置,這樣組成的一列機床群稱為切削加工自動生産線。

柔性制造系統是由一組數字控制機床和其他自動化工藝裝備組成的,用電子計算機控制,可自動地加工有不同工序的工件,能适應多品種生産。

機床組成

各類機床通常由下列基本部分組成:支承部件,用于安裝和支承其他部件和工件,承受其重量和切削力,如床身和立柱等;變速機構,用于改變主運動的速度;進給機構,用于改變進給量;主軸箱用以安裝機床主軸;刀架、刀庫;控制和操縱系統;潤滑系統;冷卻系統。

機床附屬裝置包括機床上下料裝置、機械手、工業機器人等機床附加裝置,以及卡盤、吸盤彈簧夾頭、虎鉗、回轉工作台和分度頭等機床附件。

切削加工

機床的切削加工是由刀具與工件之間的相對運動來實現的,其運動可分為表面形成運動和輔助運動兩類。

表面形成運動是使工件獲得所要求的表面形狀和尺寸的運動,它包括主運動、進給運動和切入運動。主運動是從工件毛坯上剝離多餘材料時起主要作用的運動,它可以是工件的旋轉運動(如車削)、直線運動(如在龍門刨床上刨削),也可以是刀具的旋轉運動(如銑削和鑽削)或直線運動(如插削和拉削);進給運動是刀具和工件待加工部分相向移動,使切削得以繼續進行的運動,如車削外圓時刀架溜闆沿機床導軌的移動等;切入運動是使刀具切入工件表面一定深度的運動,其作用是在每一切削行程中從工件表面切去一定厚度的材料,如車削外圓時小刀架的橫向切入運動。

輔助運動主要包括刀具或工件的快速趨近和退出、機床部件位置的調整、工件分度、刀架轉位、送夾料,啟動、變速、換向、停止和自動換刀等運動。

評價機床技術性能的指标最終可歸結為加工精度和生産效率。加工精度包括被加工工件的尺寸精度、形狀精度、位置精度、表面質量和機床的精度保持性。生産效率涉及切削加工時間和輔助時間,以及機床的自動化程度和工作可靠性。這些指标一方面取決于機床的靜态特性,如靜态幾何精度和剛度;而另一方面與機床的動态特性,如運動精度、動剛度、熱變形和噪聲等關系更大。

機床附件

機床配件,指除機床主體外的所有可方便更換的元件。

機床配件主要包括刀具夾具、操作件、分度頭、工作台、卡盤、接頭、排屑裝置、軟管、拖鍊、防護罩等。其中刀具夾具又分切削刀具、工裝夾具、刨刀、數控刀具及配套系統、刀帶、拉刀、切刀、滾刀、齒輪刀具、機用鋸片、數控刀具、夾頭、沖頭、車刀、鉸刀、镗刀、插齒刀、剃齒刀、機用刀片、刀柄、銑刀、螺紋刀具、鑽頭、刀杆、其他刀具、夾具、絲錐;操作件分手輪、拉手、手柄、把手、門鈕、其它操作件産品。

發展方向

1、虛拟機床:通過研發機電一體化的、硬件和軟件集成的仿真技術,來實現提高機床的設計水平和使用績效。

2、綠色機床:強調節能減排,力求使生産系統的環境負荷達到最小化。

3、智能機床:提高生産系統的智能化、可靠性、加工精度和綜合性能。

4、e-機床:提高生産系統的獨立自主性以及與使用者和管理者的交互能力,使機床不僅是一台加工設備,而是成為企業管理網絡中的一個節點。

其中,綠色機床将成為研究熱點。将毛坯轉化為零件的工作母機,在使用過程中不僅消耗能源,還會産生固體、液體和氣體廢棄物,對工作環境和自然環境造成直接或間接的污染。據此,綠色機床應該具有以下特點:機床主要零部件由再生材料制造;機床的重量和體積減少50%以上;通過減輕移動質量、降低空運轉功率等措施使功率消耗減少30%~40%;使用過程中産生的各種廢棄物減少50%~60%,保證基本沒有污染的工作環境;報廢後機床材料100%可回收。據統計,機床使用過程中用于切除金屬的功率隻占到25%左右,各種損耗和輔助功能占去大部分。機床綠色化的第一個措施,是通過大幅度降低機床重量和減少驅動功率來構建具有生态效益的機床。綠色機床提出一種全新的概念,大幅減少重量,力求節省材料,同時降低能耗。

操作規程

操作者必須經過考試合格,持有本機床的《設備操作證》方可操作本機床。

工作前

1、仔細閱讀交接班記錄,了解上一班機床的運轉情況和存在問題;

2、檢查機床、工作台、導軌以及各主要滑動面,如有障礙物、工具、鐵屑、雜質等,必須清理、擦拭幹淨、上油;

3、檢查工作台,導軌及主要滑動面有無新的拉、研、碰傷,如有應通知班組長或設備員一起查看,并作好記錄;

4、檢查安全防護、制動(止動)、限位和換向等裝置應齊全完好;

5、檢查機械、液壓、氣動等操作手柄、伐門、開關等應處于非工作的位置上;

6、檢查各刀架應處于非工作位置;

7、檢查電器配電箱應關閉牢靠,電氣接地良好;

8、檢查潤滑系統儲油部位的油量應符合規定,封閉良好。油标、油窗、油杯、油嘴、油線、油氈、油管和分油器等應齊全完好,安裝正确。按潤滑指示圖表規定作人工加油或機動(手位)泵打油,查看油窗是否來油;

9、停車一個班以上的機床,應按說明書規定及液體靜壓裝置使用規定(詳見附錄Ⅰ)的開車程序和要求作空動轉試車3~5分鐘。

檢查:

1、操縱手柄、伐門、開關等是否靈活、準确、可靠。

2、安全防護、制動(止動)、聯鎖、夾緊機構等裝置是否起作用。

3、校對機構運動是否有足夠行程,調正并固定限位、定程擋鐵和換向碰塊等。

4、由機動泵或手拉泵潤滑部位是否有油,潤滑是否良好。

5、機械、液壓、靜壓、氣動、靠模、仿形等裝置的動作、工作循環、溫升、聲音等是否正常。壓力(液壓、氣壓)是否符合規定。确認一切正常後,方可開始工作。

凡連班交接班的設備,交接班人應一起按上述(9條)規定進行檢查,待交接班清楚後,交班人方可離去。凡隔班接班的設備,如發現上一班有嚴重違犯操作規程現象,必須通知班組長或設備員一起查看,并作好記錄,否則按本班違犯操作規程處理。

在設備檢修或調整之後,也必須按上述(9條)規定詳細檢查設備,認為一切無誤後方可開始工作。

工作中

1、堅守崗位,精心操作,不做與工作無關的事。因事離開機床時要停車,關閉電源、氣源;

2、按工藝規定進行加工。不準任意加大進刀量、磨削量和切(磨)削速度。不準超規範、超負荷、超重量使用機床。不準精機粗用和大機小用;

3、刀具、工件應裝夾正确、緊固牢靠。裝卸時不得碰傷機床。找正刀具、工件不準重錘敲打。不準用加長搬手柄增加力矩的方法緊固刀具、工件;

4、不準在機床主軸錐孔、尾座套筒錐孔及其他工具安裝孔内,安裝與其錐度或孔徑不符、表面有刻痕和不清潔的頂針、刀具、刀套等;

5、傳動及進給機構的機械變速、刀具與工件的裝夾、調正以及工件的工序間的人工測量等均應在切削、磨削終止,刀具、磨具退離工件後停車進行;

6、應保持刀具、磨具的鋒利,如變鈍或崩裂應及時磨鋒或更換;

7、切削、磨削中,刀具、磨具未離開工件,不準停車;

8、不準擅自拆卸機床上的安全防護裝置,缺少安全防護裝置的機床不準工作;

9、液壓系統除節流伐外其他液壓伐不準私自調整;

10、機床上特别是導軌面和工作台面,不準直接放置工具,工件及其他雜物;

11、經常清除機床上的鐵屑、油污,保持導軌面、滑動面、轉動面、定位基準面和工作台面清潔;

12、密切注意機床運轉情況,潤滑情況,如發現動作失靈、震動、發熱、爬行、噪音、異味、碰傷等異常現象,應立即停車檢查,排除故障後,方可繼續工作;

13、機床發生事故時應立即按總停按鈕,保持事故現場,報告有關部門分析處理;

14、不準在機床上焊接和補焊工件。

工作後

1、将機械、液壓、氣動等操作手柄、伐門、開關等闆到非工作位置上;

2、停止機床運轉,切斷電源、氣源;

3、清除鐵屑,清掃工作現場,認真擦淨機床。導軌面、轉動及滑動面、定位基準面、工作台面等處加油保養;

4、認真将班中發現的機床問題,填到交接班記錄本上,做好交班工作。、

故障診斷方法、

數控機床電氣故障診斷有故障檢測、故障判斷及隔離和故障定位三個階段。第一階段的故障檢測就是對數控機床進行測試,判斷是否存在故障;第二階段是判定故障性質,并分離出故障的部件或模塊;第三階段是将故障定位到可以更換的模塊或印制線路闆,以縮短修理時間。為了及時發現系統出現的故障,快速确定故障所在部位并能及時排除,要求故障診斷應盡可能少且簡便,故障診斷所需的時間應盡可能短。為此,可以采用以下的診斷方法:

直觀法

利用感覺器官,注意發生故障時的各種現象,如故障時有無火花、亮光産生,有無異常響聲、何處異常發熱及有無焦煳味等。仔細觀察可能發生故障的每塊印制線路闆的表面狀況,有無燒毀和損傷痕迹,以進一步縮小檢查範圍,這是一種最基本、最常用的方法。

CNC系統的自診斷功能

依靠CNC系統快速處理數據的能力,對出錯部位進行多路、快速的信号采集和處理,然後由診斷程序進行邏輯分析判斷,以确定系統是否存在故障,及時對故障進行定位。現代CNC系統自診斷功能可以分為以下兩類:

(1)開機自診斷開機自診斷是指從每次通電開始至進入正常的運行準備狀态為止,系統内部的診斷程序自動執行對CPU、存儲器、總線、I/O單元等模塊、印制線路闆、CRT單元、光電閱讀機及軟盤驅動器等設備運行前的功能測試,确認系統的主要硬件是否可以正常工作。

(2)故障信息提示當機床運行中發生故障時,在CRT顯示器上會顯示編号和内容。根據提示,查閱有關維修手冊,确認引起故障的原因及排除方法。一般來說,數控機床診斷功能提示的故障信息越豐富,越能給故障診斷帶來方便。但要注意的是,有些故障根據故障内容提示和查閱手冊可直接确認故障原因;而有些故障的真正原因與故障内容提示不相符,或一個故障顯示有多個故障原因,這就要求維修人員必須找出它們之間的内在聯系,間接地确認故障原因。

數據和狀态檢查

CNC系統的自診斷不但能在CRT顯示器上顯示故障報警信息,而且能以多頁的“診斷地址”和“診斷數據”的形式提供機床參數和狀态信息,常見的數據和狀态檢查有參數檢查和接口檢查兩種。

(1)參數檢查數控機床的機床數據是經過一系列試驗和調整而獲得的重要參數,是機床正常運行的保證。這些數據包括增益、加速度、輪廓監控允差、反向間隙補償值和絲杠螺距補償值等。當受到外部幹擾時,會使數據丢失或發生混亂,機床不能正常工作。

(2)接口檢查CNC系統與機床之間的輸入/輸出接口信号包括CNC系統與PLC、PLC與機床之間接口輸入/輸出信号。數控系統的輸入/輸出接口診斷能将所有開關量信号的狀态顯示在CRT顯示器上,用“1”或“0”表示信号的有無,利用狀态顯示可以檢查CNC系統是否已将信号輸出到機床側,機床側的開關量等信号是否已輸入到CNC系統,從而可将故障定位在機床側或是在CNC系統。

報警指示燈顯示故障

現代數控機床的CNC系統内部,除了上述的自診斷功能和狀态顯示等“軟件”報警外,還有許多“硬件”報警指示燈,它們分布在電源、伺服驅動和輸入/輸出等裝置上,根據這些報警燈的指示可判斷故障的原因。

備闆置換法

利用備用的電路闆來替換有故障疑點的模闆,是一種快速而簡便的判斷故障原因的方法,常用于CNC系統的功能模塊,如CRT模塊、存儲器模塊等。需要注意的是,備闆置換前,應檢查有關電路,以免由于短路而造成好闆損壞,同時,還應檢查試驗闆上的選擇開關和跨接線是否與原模闆一緻,有些模闆還要注意模闆上電位器的調整。置換存儲器闆後,應根據系統的要求,對存儲器進行初始化操作,否則系統仍不能正常工作。

交換法

在數控機床中,常有功能相同的模塊或單元,将相同模塊或單元互相交換,觀察故障轉移的情況,就能快速确定故障的部位。這種方法常用于伺服進給驅動裝置的故障檢查,也可用于CNC系統内相同模塊的互換。

敲擊法

CNC系統由各種電路闆組成,每塊電路闆上會有很多焊點,任何虛焊或接觸不良都可能出現故障。用絕緣物輕輕敲打有故障疑點的電路闆、接插件或電器元件時,若故障出現,則故障很可能就在敲擊的部位。

測量比較法

為檢測方便,模塊或單元上設有檢測端子,利用萬用表、示波器等儀器儀表,通過這些端子檢測到的電平或波形,将正常值與故障時的值相比較,可以分析出故障的原因及故障的所在位置。由于數控機床具有綜合性和複雜性的特點,引起故障的因素是多方面的。上述故障診斷方法有時要幾種同時應用,對故障進行綜合分析,快速診斷出故障的部位,從而排除故障。同時,有些故障現象是電氣方面的,但引起的原因是機械方面的;反之,也可能故障現象是機械方面的,但引起的原因是電氣方面的;或者二者兼而有之。因此,對它的故障診斷往往不能單純地歸因于電氣方面或機械方面,而必須加以綜合,全方位地進行考慮。

發展

“2020年,機床行業運行情況好于預期,呈現恢複性增長态勢。”日前,中國機床工具工業協會常務副理事長毛予鋒表示,經曆了近10年的低迷期,機床行業正迎來發展新機遇。

機床,生産機器的機器,被稱為“工業母機”,是裝備制造業的核心生産基礎。在極不平凡的2020年,機床業精耕細作,在高檔數控機床領域取得了諸多新突破:超大型五軸機床取得重大突破,世界首台鑄鍛銑一體化3D打印數控機床研發成功

國産機床裝上“智能化”翅膀

甯夏小巨人機床有限公司工人在組裝數控機床。該公司數控機床出口歐洲,涉及新能源、航空、電子等新興産業的機床産品。新華社記者王鵬攝。

我國是制造業大國,機床行業卻面臨着“大而不強”的窘境。市場需求結構的不斷升級,倒逼着機床企業加快轉型的步伐。随着用戶需求不斷提升和現代科技手段的推廣應用,智能化将成為機床業主要發展方向。普通機床産品的市場空間越來越小,中高端市場的競争将日趨激烈

自2011年下半年以來,我國機床行業市場消費總量萎縮,國外市場疲軟,國産機床企業之間的競争日趨白熱化。

“我國機床行業最大的軟肋,就是産業結構長期處于中低端,遲遲邁不上中高端。”中國機床工具工業協會常務副理事長兼秘書長陳惠仁說

“機床奇人”潘旭華

在同樣嚴苛的檢測标準和測試條件下,相同零部件的加工精度,潘旭華機床加工的産品均優于國外最先進同類機床的加工産品。更為關鍵的是,潘旭華研發的機床,因成本低廉,可同時滿足高端産品和低端産品的加工需要。

那一天,新華社發布了這樣的消息:可以掌控萬分之一毫米細微移動的超精密加工裝備核心技術在中國取得突破。

此時,“機床奇人”潘旭華已是浙江師範大學特聘教授。這項具有我國自主知識産權的國家“863”重點項目科技成果,意味着汽車等各類機械設備的發動機有望延長壽命、降低油耗,中國制造的發動機有望第一次“驅動”到國際先進水平

上一篇:工業交換機

下一篇:雙刀雙擲開關

相關詞條

相關搜索

其它詞條