原理
光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本。该单色光一部分被标本吸收,另一部分则透过标本照射到光电检测器上,光电检测器将这一待测标本不同而强弱不同的光信号转换成相应的电信号。电信号经前置放大,对数放大,模数转换等信号处理后送入微处理器进行数据处理和计算,最后由显示器和打印机显示结果。
微处理机还通过控制电路控制机械驱动机构X方向和Y方向的运动来移动微孔板,从而实现自动进样检测过程。而另一些酶标仪则是采用手工移动微孔板进行检测,因此省去了X,Y方向的机械驱动机构和控制电路,从而使仪器更小巧,结构也更简单。
微孔板是一种经事先包理专用于放置待测样本的透明塑料板,板上有多排大小均匀一致的小孔,孔内都包埋着相应的抗原或抗体,微孔板上每个小孔可盛放零点几毫升的溶液。
光是电磁波,波长100nm~400nm称为紫外光,400nm~780nm之间的光可被人眼观察到,大于780nm称为红外光。人们之所以能够看到色彩,是因为光照射到物体上被物体反射回来。绿色植物之所以是绿色,是因为植物吸收的大部分为红橙光和蓝紫光,但对绿色不吸收,反射出来,所以植物呈现为绿色。酶标仪测定的原理是在特定波长下,检测被测物的吸光值。
随着检测方式的发展,拥有多种检测模式的单体台式酶标仪叫做多功能酶标仪,可检测吸光度(Abs)、荧光强度(FI)、时间分辨荧光(TRF)、荧光偏振(FP)、和化学发光(Lum)。
酶标仪从原理上可以分为光栅型酶标仪和滤光片型酶标仪。光栅型酶标仪可以截取光源波长范围内的任意波长,而滤光片型酶标仪则根据选配的滤光片,只能截取特定波长进行检测。
结构
规格有24孔板,48孔板,96孔板等多种,不同的仪器选用不同规格的孔板,对其可进行一孔一孔地检测或一排一排地检测。
酶标仪所用的单色光既可通过相干滤光片来获得,也可用分光光度计相同的单色器来得到。在使用滤光片作滤波装置时与普通比色计一样,滤光片即可放在微孔板的前面,也可放在微孔板的后面,聚光镜,光栏后到达反射镜,经反射镜作90°反射后垂直通过比色溶液,然后再经滤光片送到光电管。
从酶标仪工作框图和光路图上可看出,它和普通的光电比色计有以下几点差异:
(l)盛装待测比色液的容器不再使用比色皿,而是使用塑料微孔板。微孔板常用透明的聚乙烯材料制成,对抗原抗体有较强的吸附作用,故用它作为固相载体。
⑵由于盛样本的塑料微孔板是多排多孔的,光线只能垂直穿过,因此酶标仪的光束都是垂直通过待测溶液和微孔板的,光束既可是从上到下,也可以是从下到上穿过比色液。
⑶酶标仪通常不仅用A,有时也使用光密度OD来表示吸光度。酶标仪可分为单通道和多通道2种类型,单通道又有自动和手动2种之分。自动型的仪器有X,Y方向的机械驱动机构,可将微孔板L的小孔一个个依次送入光束下面测试,手动型则靠手工移动微孔板来进行测量。
在单通道酶标仪的基础上又发展了多通道酶标仪,此类酶标仪一般都是自动化型的。它没有多个光束和多个光电检测器,如 12个通道的仪器设有12条光束或12个光源,12个检测器和12个放大器,在X方向的机械驱动装置的作用下,样品12个为一排被检测。多通道酶标仪的检测速度快,但其结构较复杂价格也较高。
用途
可广泛应用于低紫外区的DNA、RNA定量及纯度分析(A260/A280)和蛋白定量(A280/BCA/Braford/Lowry),酶活、酶动力学检测,酶联免疫测定(ELISAs),细胞增殖与毒性分析,细胞凋亡检测(MTT),报告基因检测及G蛋白偶联受体分析(GPCR)等。
工作环境
酶标仪是一种精密的光学仪器,因此良好的工作环境不仅能确保其准确性和稳定性,还能够延长其使用寿命。仪器应放置在无磁场和干扰电压的位置。仪器应放置在低于40分贝的环境下。
为延缓光学部件的老化,应避免阳光直射。操作时环境温度应在15℃-40℃之间,环境湿度在15%-85%之间。操作电压应保持稳定。操作环境空气清洁,避免水汽,烟尘。保持干燥、干净、水平的工作台面,以及足够的操作空间。



















