斯特林公式

斯特林公式

亚伯拉罕棣莫弗提出的公式
斯特灵公式是一条用来取n阶乘近似值的数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特灵公式十分好用。[1]
    中文名:斯特林公式 外文名: 别名: 英文名:Stirling's approximation 提出者:亚伯拉罕棣莫弗 应用领域:数学

定义

斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义。在数学分析中,大多都是利用Г函数、级数和含参变量的积分等知识进行证明或推导,很为繁琐冗长。近年来,一些国内外学者利用概率论中的指数分布、泊松分布、χ²分布证之。

意义

Stirling公式的意义在于:当n足够大时,n!计算起来十分困难,虽然有很多关于n!的等式,但并不能很好地对阶乘结果进行估计,尤其是n很大之后,误差将会非常大。但利用Stirling公式可以将阶乘转化成幂函数,使得阶乘的结果得以更好的估计。而且n越大,估计得越准确。

相关词条

相关搜索

其它词条