康托尔集

康托尔集

位于一条线段上的点的集合
康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合。取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔点集,记为P。
  • 中文名:康托尔集
  • 外文名:
  • 别名:
  • 表达式:
  • 提出者:
  • 适用领域:
  • 领域:数学
  • 引入者:格奥尔格·康托尔
  • 发现者:亨利·约翰·斯蒂芬·史密斯

引入

1883年,德国著名数学家康托尔(G.Cantor)构造了一个奇异的集合:取一条长度为1的直线段,将它三等分,去掉中间一段,将剩下的两段各再三等分,各去掉中间一段,剩下更短的四段各再三等分,这样一直继续操作下去,直至无穷,便可得到一个离散的点集F,称为康托尔三分集。

康托三分集

概念解释

取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔点集,记为P。

称为康托尔点集的极限图形长度趋于0,线段数目趋于无穷,实际上相当于一个点集。操作n次后边长r=(1/3)^n,边数(r)=2^n,根据公式D=lnN(r)/ln(1/r),D=ln2/ln3=0.631。

所以康托尔点集分数维是0.631。

性质特点

康托三分集中有无穷多个点,所有的点处于非均匀分布状态。此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统。

康托三分集具有

(1)自相似性;

(2)精细结构;

(3)无穷操作或迭代过程;

(4)传统几何学陷入危机。用传统的几何学术语难以描述,它既不满足某些简单条件如点的轨迹,也不是任何简单方程的解集。其局部也同样难于描述。因为每一点附近都有大量被各种不同间隔分开的其它点存在。

(5)长度为零;

(6)简单与复杂的统一。

康托尔集P具有三条性质:

1、P是完备集。

2、P没有内点。

3、P的基数为c。

康托尔集是一个基数为c的疏朗完备集。

相关词条

相关搜索

其它词条