方差公式

方差公式

数学公式
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。[1]若x1,x2,x3......xn的平均数为m 则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2] 方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。方差公式中,平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型。
    中文名:方差公式 外文名: 拼音: 近义词: 反义词: 表达式:D(CX )=C2 D(X ) 应用学科:社会各方面 适用领域范围:统计学 地位:数学统计学中的重要公式

计算方法

若x,x,x......x的平均数为m则方差

例1 两人的5次测验成绩如下:

X: 50,100,100,60,50 E(X )=72;

Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。

单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):

直接计算公式分离散型和连续型,具体为:这里 是一个数。推导另一种计算公式

得到:“方差等于平方的均值减去均值的平方”。

其中,分别为离散型和连续型的计算公式。 称为标准差或均方差,方差描述波动

性质

1.设C为常数,则D(C) = 0(常数无波动);

2. D(CX )=C2 D(X ) (常数平方提取);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

3.若X 、Y 相互独立,则,证:记前面两项恰为 D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。

常用分布

1.两点分布

2.二项分布

X ~ B ( n, p )

引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)

3.泊松分布(推导略)

4.均匀分布

另一计算过程为

5.指数分布(推导略)

6.正态分布(推导略)

相关词条

相关搜索

其它词条