无线充电技术

无线充电技术

磁场传送能量技术
无线充电技术,利用磁铁立即为一个以上的设备充电并且完全不借助电线,这项技术允许设备在距离充电器最远可达几米远的地方进行无线充电,富士通的无线充电技术利用磁共振在充电器与设备之间的空气中传输电荷,线圈和电容器则在充电器与设备之间形成共振。
    中文名:无线充电技术 外文名: 别名: 英文名:Wireless charging technology 别 名:感应充电 发明人:麻省理工学院学者

概述

“无线充电”是利用一种特殊设备将电源插座的电力转变为可充电的电波,从而在扔掉电线的情况下直接对电子设备充电。无线充电大致上是通过磁场输送能量。无线充电还有一个好处是省电,无线充电设备的效能接收在70%左右,具备电满自动关闭功能,避免了不必要的能耗。而且,这个效能接收率在不断提高,很快将能达到98%。对于不同的电子产品,电源接口能自动对应,需要充电时,发射器和接收芯片会同时自动开始工作,充满电时,两方就会自动关闭。它还能自动识别不同的设备和能量需求。

工作原理

原理简介

无线充电技术是靠两种新的设备来实现的,第一个是充电器,它要与电力相连接,然后会有一个“托盘”与充电器进行中转,只要手机与“托盘”距离在规定范围内,那么手机就会自动进行无线充电。由于传输的不是一些简单的数据,而是电力,因此无线充电在目前的距离要求比较严格,手机与“托盘”在现在只能实现1厘米之内的近距离充电,但是随着技术的进步,这一距离可能会拉长。虽然电力没有直接接触到手机产品,但是靠无线方式为手机充的电在使用效果上仍然和普通充电方式一样,续航能力并不会有所损失。

共振原理

1.无线充电技术同样以10兆赫的频率震动的膝上型电脑接收到电流,能量充入设备中。

2.无线充电技术天线以10兆赫的波长振动,产生电磁波。

3.无线充电技术使用的天线发出的能量传播到2米(6.5英尺)外。

4.无线充电技术输电线中的电能传入用铜制造的天线中。

5.无线充电技术没有转换成膝上型电脑的能量不会被天线重新吸收。不能产生10兆赫共振的人和其他物体不会对它产生干扰。

特点

1、从理论来说,无线充电技术对人体安全无害处,无线充电使用的共振原理是磁场共振,只在以同一频率共振的线圈之间传输,而其他装置无法接受波段,另外,无线充电技术使用的磁场本身就是对人体无害的。但无线充电技术毕竟是新型的充电技术,以迈源科的无线充电器来说,很多人都会担忧无线充电技术会像当初Wi-Fi和手机天线杆刚出现一样,其实技术本身是无害的。

2、富士通的无线充电技术利用磁共振在充电器与设备之间的电场和磁场中传输电荷,线圈和电容器则在充电器与设备之间形成共振。

3、富士通表示这一系统可以在未来得到广泛应用,例如针对电动汽车的充电区以及针对电脑芯片的电量传输。采用这项技术研制的充电系统所需要的充电时间只有当前的一百五十分之一

4、转化率一直是很多人担心的问题,麻省理工学院通过研究表明,无线充电技术的损耗比起有线充电技术来说更高。迈源无线充电转化率比起有线要高几个百分点。高转化,也是无线充电器得以在全球进行应用的关键因素。但无线充电技术也受到距离的限制,未来发展,必然需要解决远距离传送对于波段和磁场范围的精准定位问题。

5、核心芯片是无线充电技术在产品应用的难点之一。精准辐射范围控制,磁场频率大小,其它控制等都是由芯片实现。

市场应用发展瓶颈

1.核心无线充电技术不完善

2.辐射区域难以实现远距离传输

3.长距离定位对硬件的要求太高

4.磁场共振高度匹配可控制小

5.应用范围局限,没有得到延伸6.市场因素与消费者心理导致开发商不愿意大力进行技术研发

优缺点

《有线充电技术》与《无线充电技术》各有各的优缺点。

《有线充电技术》的优点:

1,能源转换一次性获得,电能损失小,节能环保。

2,交直流转换一次性,不存在中高频电磁辐射。

3,设备技术含量低,经济投入不大,维修方便。

4,电功率的调节范围较宽,适合多种不同电压和电流等级的蓄电瓶储能补给。

《有线充电》的缺点:

1,设备的移动搬运和电源的引线过长,主要是人工操作繁琐。

2,设备以及在对电动汽车充电时其公共占地面积过大,

3,在人工操作过程中,极易出现设备的过度磨损以及不安全性等因素。

《无线充电技术》的优点:

1,利用无线磁电感应充电的设备可做到隐形,设备磨损率低,应用范围广,公共充电区域面积相对的减小,但减小的占地面积份额不会太大。

2,技术含量高,操作方便,可实施相对来说的远距离无线电能的转换,但大功率无线充电的传输距离只限制在5米以内,不会太远。

3,操作方便。

《无线充电技术》的缺点:

1,虽然设备技术含量高,但设备的经济成本投入较高,维修费用大。

2,因实现远距离大功率无线磁电转换,所以设备的耗能较高。无线传输的距离越远,无用功的耗损也就会越大。

3,《无线充电技术》设备本身实现的是二次能源转换,也就是将网电降压(或直接)变为直流电后在进行一次较高频率的开关控制交流变换输出。由于大功率的交直交电流转换是进行电能的二次性无线传输原因,所以电磁的空间磁损率太大。

4,因为采取无线传输,磁能的无用功耗损会随着《无线充电设备》的功率增高而上升。

如今,《无线充电技术》在小功率的范围内还是可以显示出它的优越性的。比如小型直流用电设备中的通讯仪器仪表、民用无线通讯手机、微型计算机、小型便携式家用电器等。但实施大功率的无线传输来说,就比较困难了。根据磁能无线传输理论来说,传输的距离越远,磁能的消耗就会越大,而在终端设备中所获得的电能量也就越小。

从电动汽车所需的能量补充电功率来说不是很小,一般小型的家用电子设备的充电电流在0.5安培至2安培之间。而一部几十马力的电动汽车所需的电能补充电流大多在5安培至20安培左右。电动汽车的功率越大,所需补充电能的电流量也就越大。而且我们在制造《无线充电设备》时,其输出功率会大于500瓦特以上或甚至更高。如果多部机车的联动充电,那么所需的总电源功率输出就会直线上升。对市电的供电系统来说无疑是雪上加霜,从而带给整座城市的是电网改造和巨额的经济投入,真是得不偿失。

另外,我们可计算一下经济账。按充电电压24伏特和15安培的电流对一部电动汽车进行充电,充电时间为10小时,其电能损耗只不过在3度左右,按市电当前的0.5角价格计算,给一部电动汽车充电的费用大约在一元五角钱左右。如果个人将电动车开到公共无线充电场合去充电的话,其费用不用说是很高的,我们这里所说的是自己使用一般的有线充电装置对电动车充电时所产生的费用。我们可对比一下,在同一台电动车充电的状态下,无线充电设备的功率肯定大于一般有线充电装置。

因为《无线充电设备》的电损肯定大于有线充电设备的损耗,鉴于两种设备之间的经济投入和充电费用,所以人们往往还是喜欢采取低经济投入的有线充电设备来使用。依据电工学理论,我们知道,变压器的磁路越长,磁损会越大。不论是采取那一种电磁——磁电的远距离传输转换,都会损失大量的电能。而且电磁——磁电的转换次数越多,电能的损耗也会越大。而且电子器件的工作电流越大,器件的老化期也会越提前,这给我们对设备的维修和使用带来了很多的不便利因素。

关于电动车充电站的设立,在我看来不碍采取两种方式进行对比。就其一次性的充电费用来说,客户们还是喜欢选择一般有线充电的充电方式。我说的前提是两种充电设备具有一样的技术指标,都可实施快速充电方式和同样的充电质量。此时,我们可通过对充电设备的电能耗损参数做个对比,看看哪种设备的经济价值和社会效益更高。

因为我们这个社会是以市场经济核算下的区域部门单位,人人都要计算经济的投入与回报,所以每一项高科技产业的投入也必须考虑大众化的普遍认可和产业自身的经济杠杆问题。同时在化石能源还没有达到枯竭的现代社会,民用电动汽车的发展也不会太快,如果能够提高蓄电池的一次性充电使用周期才是解决问题的最好办法。较短的电池一次性充电使用周期是制约电动汽车发展的最大阻力,从汽车的功率和速度来看,燃料汽车还是存在较多的优越性。

根据现代能源匮乏的实际情况,电动运输工具实现大功率《无线充电技术》的产业运作还为时过早。为什么会这样的说呢?虽然发展电动汽车可以节约能源和有利于环境的保护,但对供电系统的各方面量化要求也会更大;如增加电站的建设投资、输电网络的改造增容等原因。还有,因为电动汽车的社会保有量越大,所需的长期停车充电场所的占地面积也要随之扩大。实际上,采取大功率《无线充电技术》的社会经济投入费用普遍较高,而利用常规有线式充电方式既简便,一次性投资又小,而且对市电的量化需求又不大

。还有就所占用的土地面积来说也相对的减少,这里所说的减少,是因为每个家庭都可以实施对电动汽车的能量补充,不会统一的集中到公共场所去充电。另外,每个家庭也不会购买价格较高的《无线充电设备》的,而且自己所担负的充电费用较公共场所要低得多。所以我们一定要宗合来考虑实施大功率《无线充电技术》的步子迈得是否不要太大,这仅仅是为了一时的方便,而导致了社会总体资源的大量消耗是否是得不偿失呢?

三大主流技术

目前的无线充电技

无线充电

术还不算成熟,不仅技术发展缓慢,标准也尚未统一。目前主流的无线充电标准有三种:Power Matters Alliance(PMA)标准、Qi标准、Alliance for Wireless Power(A4WP)标准。下面我们就针对这三种标准进行简单介绍。

PowerMattersAlliance标准

Power Matters Alliance标准是由Duracell Powermat公司发起的,而该公司则是由宝洁与无线充电技术公司Powermat合资经营,拥有比较出色的综合实力。除此以外,Powermat还是Alliance for Wireless Power(A4WP)标准的支持成员之一。

目前已经有AT&T、Google和星巴克三家公司加盟了PMA联盟(Power Matters Alliance缩写)。PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。

目前Duracell Powermat公司推出过一款WiCC充电卡采用的就是Power Matters Alliance标准。WiCC比SD卡大一圈,内部嵌入了用于电磁感应式非接触充电的线圈和电极等组件,卡片的厚度较薄,插入现有智能手机电池旁边即可利用,利用该卡片可使很多便携终端轻松支持非接触充电。

Qi标准

Qi是全球首个推动无线充电技术的标准化组织--无线充电联盟(Wireless Power Consortium,简称WPC)推出的“无线充电”标准,具备便捷性和通用性两大特征。首先,不同品牌的产品,只要有一个Qi的标识,都可以用Qi无线充电器充电。其次,它攻克了无线充电“通用性”的技术瓶颈,在不久的将来,手机、相机、电脑等产品都可以用Qi无线充电器充电,为无线充电的大规模应用提供可能。

目前,市场比较主流的无线充电技术主要通过三种方式,即电磁感应、无线电波、以及共振作用,而Qi采用了目前最为主流的电磁感应技术。在技术应用方面,中国公司已经站在了无线充电行业的最前沿。据悉,目前Qi在中国的应用产品主要是手机,这是第一个阶段,以后将发展运用到不同类别或更高功率的数码产品中。截至目前,联盟成员数量已增加到74家,包括飞利浦、HTC、诺基亚、三星、索尼爱立信、百思买等知名企业都已是联盟的成员。

A4WP标准

A4WP是Alliance for Wireless Power标准的简称,由美国高通公司、韩国三星公司以及前面提到的Powermat公司共同创建的无线充电联盟创建。该联盟还包括Ever Win Industries、Gill Industries、Peiker Acustic和SK Telecom等成员,目标是为包括便携式电子产品和电动汽车等在内的电子产品无线充电设备设立技术标准和行业对话机制。

发展历史

其实早在1890年,物理学家兼电气工程师尼古拉·特斯拉(Nikola Tesla)就已经做了无线输电试验。他提出并实现了交流发电。磁感应强度的国际单位制也是以他的名字命名的。

特斯拉构想的无线输电方法,是把地球作为内导体、地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8Hz的低频共振,再利用环绕地球的表面电磁波来传输能量。但因财力不足,特斯拉的大胆构想并没有得到实现。后人虽然从理论上完全证实了这种方案的可行性,但世界还没有实现大同,想要在世界范围内进行能量广播和免费获取也是不可能的。因此,一个伟大的科学设想就这样胎死腹中。

1968年,美国工程师彼得·格拉泽(Peter Glaser)提出了空间太阳能发电(Space Solar Power,SSP)的概念,其构想是在地球外层空间建立太阳能发电基地,通过微波将电能传输回地球,并通过整流天线把微波转换成电能。1979年,美国航空航天局NASA和美国能源部联合提出太阳能计划-建立“SPS太阳能卫星基准系统”。欧盟则在非洲的留尼汪岛建造了一座10万千瓦的实验型微波输电装置,已于2003年向当地村庄送电。野心勃勃的日本拟于2020年建造试验型太空太阳能发电站SPS2000,2050年进入规模运行。

其实,无线充电技术离我们这些普通人也并非遥不可及。相信一定有人使用过某种品牌的电动牙刷,只要将牙刷插入220V的充电座上即可实现不接触的无线充电,使用起来很方便。这种无线充电就是利用电磁感应原理,解决了潮湿环境下的用电安全问题。

无线电能传输有电磁感应、射频和微波三种基本方式,这三种技术分别适用于近程、中短程与远程电力传送。但每种无线充电方式都有一些缺点,从而限制了它的发展。例如电磁感应方式传送能量较小、传送范围较小等,这也是为什么电动牙刷必须放在充电座上才能充电,而不能将牙刷任意摆放的原因。所以,现在各家公司的研究方向就是对这些技术进行改良和完善,从而最终实现商品化。

市场需求

无线充电技术不仅可以为手机产品充电,它还将在PMP/MP3播放器、数字照相机以及笔记本电脑等产品领域得到快速应用和发展。根据市场调查机构的调查,到2013年,全球无线充电潜在市场容量接近140亿美元,到2014年,无线充电设备的出货量将达到2亿5千万台,也正是这一持续增长的市场需求让Qi标准将在更多领域发挥它的超便捷作用。

远距

方便自不必说,除此之外,无线充电还更安全,没有了外露的连接器,漏电、跑电等安全隐患都彻底避免了。有人担心辐射的问题,这一技术最先在净水器中运用,至今已经有8年时间了,安全性已经得到了36个国家的验证,肯定不会对人体和环境带来危害。据介绍,无线充电大致上是通过磁场输送能量,而人类以及人类身边的绝大多数物件都是非磁性的。无线充电还有一个好处是省电,无线充电设备的效能接收在70%左右,和有线充电设备相等,但是它具备电满自动关闭功能,避免了不必要的能耗。而且这个效能接收率在不断提高.

无线充电设备比普通充电器“聪明”很多,对于不同的电子产品,电源接口能自动对应,需要充电时,发射器和接收芯片会同时自动开始工作,充满电时,两方就会自动关闭。它还能自动识别不同的设备和能量需求,进行‘个性化工作’,这就是智能。

现在,为了消费者的安全以及他们的便利性考虑,相关科研人员先提供了近磁场无线充电技术(即需放在发射器旁边),同时,他们也在研究远距离无线充电,这将是一个新兴市场。实际上现在的技术就可以达到3英尺~4英尺的范围内进行有效的电量传输,但这还需要经过相关组织的验证。相信未来5到10年,甚至更快,远距离无线充电就会进入每一个人的生活中。

未来,不仅是小功率电器,常见的家用电器设备、医疗设备、电动工具、办公室电器、厨房电器等都可以实现无线充电了。其实准确的说,应该叫“无线供电”,也就是一边传输一边使用电能,不需要任何类似于电池的电量存储设备,更不需要提前充电了。

到那时,电线、插线板、电池都可以消失了,你甚至感受不到电的存在,它就像空气一样,让你觉得手到擒来。

先驱

Palm︱美国

Palm公司是美国老牌智能手机厂商,它最早将无线充电应用在手机上。它推出的充电设备“触摸石”,就可以利用电磁感应原理无线为手机充电。

海尔︱中国

海尔推出的概念性“无尾电视”,不需要电源线、信号线和网线。海尔称该产品采用了与麻省理工学院合作的无线电力传输技术。

Powermat︱美国

目前 Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成,售价在100美元左右。

劲量︱美国

劲量(Energizer)是美国知名的电池和手电筒品牌。该公司预计将于10月正式推出一款无线充电器,售价在89美元左右。

微软︱美国

由微软亚洲研究院研发的一款无线充电板装置名为uPad,已在2008年底造出样机。

富士通︱日本

富士通的系统与美国witricity公司研发的技术类似,后者同样利用磁共振传输电量,传输距离可达到几米远。这项技术将促使日本政府在2012年之前在公共场所设置无线充电网点。

目前,三星电子宣称其2012年度旗舰智能手机GalaxySIII具有无线充电功能。实际上没有完成,最新的GalaxySIII中并没有无线充电功能。

诺基亚|Lumia 920智能手机

北京时间9月5号,诺基亚世界大会在纽约召开。会上,诺基亚联合微软发布了基于Windows Phone 8系统的Lumia 920智能手机。 科宏晶︱美国 “iNPOFi”无线充电器

在2013年美国CES消费电子展上展出一款命名为“iNPOFi”的无线充电产品可以支持当下两大主流手机阵营,即苹果iPhone 4/4S和三星Galaxy S III。与手机自带无线充电模块的诺基亚Lumia 920不同的是,用户只需购买与自己手机相对应,并且内置无线充电模块的保护壳即可,有着更好的兼容性。其突出特性是无电磁线圈,无辐射,充电效率高。[2]

除了展会现场产出的产品之外,“iNPOFi”还将陆续推出系列产品, 比如“移动无线充”,这款产品本身自带高容量电芯,可以让使用者即使是在无人区,也可以连续为手机供电,这是其他任何无线充电产品都不具备的,除此之外我们还将针对更多的品牌和机型推出系列配套产品,满足更多终端客户的需求;[2-3]

进展

从技术发展来看,无线充电技术建立在RFID近距离磁场耦合技术发展基础上,手机甚至不需要软件更改就可以安装充电线圈和整流芯片。有几类安装方式:

其一:一个感应线圈+芯片,构成独立组件。这类组件小到硬币大小,大到38x40mm。用金属铜线绕制线圈。

其二:手机锂电池周边框架中加装线圈,号称无线充电锂电池。这类电池好处是安装便利,但是缺陷也很明显,因为手机电池是金属件,会阻挡充电的电磁波穿透,使得充电效率低。

其三:采用LDS(立体电路)技术,在手机塑胶外壳上镭射天线。

其四:采用FPC(柔性电路板)制造天线组件,缺点是价格贵。优点是柔性、且薄,便于安装。

以上几类方式,最有前途的是LDS技术,国内推出了系列微航激光塑料、磁性激光塑料、全自动大幅面高速激光机,使得制造工艺得以普及。

2013年,将是无线充电技术开始普及的一年。

2013年1月,哈尔滨工业大学电气工程及其自动化学院发布了磁共振式无线电能传输技术。新技术可使手机、电脑、家电不插电源即可充电、工作。[7]

三大主流标准

目前主流的无线充电标准有三种:Power Matters Alliance(PMA)标准、Qi标准、Alliance for Wireless Power(A4WP)标准。

PowerMattersAlliance标准

Power Matters Alliance标准是由Duracell Powermat公司发起的,而该公司则是由宝洁与无线充电技术公司Powermat合资经营,拥有比较出色的综合实力。除此以外,Powermat还是Alliance for Wireless Power(A4WP)标准的支持成员之一。

目前已经有AT&T、Google和星巴克三家公司加盟了PMA联盟(Power Matters Alliance缩写)。PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。

目前Duracell Powermat公司推出过一款WiCC充电卡采用的就是Power Matters Alliance标准。WiCC比SD卡大一圈,内部嵌入了用于电磁感应式非接触充电的线圈和电极等组件,卡片的厚度较薄,插入现有智能手机电池旁边即可利用,利用该卡片可使很多便携终端轻松支持非接触充电。

WiCC充电卡

另外作为支持,星巴克计划在波士顿地区17家门店进行Duracell Powermat无线充电试点,这将为PMA在美国立足提供有力的支撑。星巴克首席数字官Adam Brotman表示:“星巴克将在部分桌面上安置无线充电设备,看看顾客反应如何。”如果顾客没有与iPhone或Galaxy相匹配的充电外壳,星巴克将在试点期间进行小部分免费赠送,而柜台也有部分外壳出借。

Qi标准

Qi是全球首个推动无线充电技术的标准化组织--无线充电联盟(Wireless Power Consortium,简称WPC)推出的“无线充电”标准,具备便捷性和通用性两大特征。首先,不同品牌的产品,只要有一个Qi的标识,都可以用Qi无线充电器充电。其次,它攻克了无线充电“通用性”的技术瓶颈,在不久的将来,手机、相机、电脑等产品都可以用Qi无线充电器充电,为无线充电的大规模应用提供可能。

目前,市场比较主流的无线充电技术主要通过三种方式,即电磁感应、无线电波、以及共振作用,而Qi采用了目前最为主流的电磁感应技术。在技术应用方面,中国公司已经站在了无线充电行业的最前沿。据悉,目前Qi在中国的应用产品主要是手机,这是第一个阶段,以后将发展运用到不同类别或更高功率的数码产品中。截至目前,联盟成员数量已增加到74家,包括飞利浦、HTC、诺基亚、三星、索尼爱立信、百思买等知名企业都已是联盟的成员。

德州仪器推出的小型Qi无线电源芯片

Qi标准的典型代表性产品有:诺基亚Lumia 920、诺基亚Lumia 820、谷歌Nexus 4等。使用这些手机的时候,不需要安装任何配件,直接将它放在任何一款支持 Qi 标准的充电器上就能开始充电,目前市面上已经有了劲量、PowerMate等品牌的大量不同款式的无线充电器可供选择。

诺基亚Lumia920:A4WP标准

A4WP是Alliance for Wireless Power标准的简称,由美国高通公司、韩国三星公司以及前面提到的Powermat公司共同创建的无线充电联盟创建。该联盟还包括Ever Win Industries、Gill Industries、Peiker Acustic和SK Telecom等成员,目标是为包括便携式电子产品和电动汽车等在内的电子产品无线充电设备设立技术标准和行业对话机制。

该无线充电联盟将重点引入“电磁谐振无线充电”技术,与Qi的“电磁感应技术”有所区别,这两种技术各有千秋。前者传输效率可能较低,但可以实现稍远距离的无线充电。后者需要近距离接触,例如将手机放在一个底座上,不用接线就可以通过感应充电,但这样充电效率较高。

A4WP标准组成联盟希望让无线充电迅速普及,让用户在任何地方都可进行无线充电。或者说,A4WP想要让无线充电便宜一些,并且在不增加手机、平板或者笔记本电脑体积的情况下增加充电接口,这意味着将有越来越多的制造商默认选择无线充电器。

业界人士认为,高通、三星、Powermat等公司创立的无线充电联盟扩大了针对的产品范围,包括了电动汽车等更广泛的电子产品领域。

由于联盟组成时间较晚,目前采用该标准的产品并不多见。之前三星曾表示,Galaxy S III智能手机配件中包含一款无线充电器,不过上市时间尚未确定,猜测该款无线充电器将会符合A4WP标准。不过由于A4WP与Qi的技术原理不同,Galaxy S III与Lumia 920的充电器将不能通用,用户不得不准备两个充电器对不同产品进行充电。

其他

电场耦合

除了前面提到的使用电磁感应模式进行的无线充电,电场耦合也是一种常用的无线充电模式。在电场耦合的无线充电模式中,充电座和待充电电器不是通过高频磁场来进行磁场的感应,而是直接通过两者之间形成的电容中的高频电场,其特点包括[8]:

带充电电器无需和充电座精确对准

需要提高耦合电容的电压来减小充电电流,提高充电效率

电场耦合式充电设备的成本较低

哈工大电气工程及自动化学院研发了一项无线电能传输技术,该技术新技术可使手机、电脑、家电甩掉连接线,即使1米以外,也可不插电源充电。

美国麻省理工学院的研究人员最近在无线传输电力方面取得了新进展,他们用两米外的一个电源,“隔地”点亮了一盏60瓦的灯泡。

电动汽车

电池续航能力一直是我国电动汽车产业快速发展的羁绊,在电池技术短时间无法突破时,改进充电模式就成为另一个突破方向。作为电动汽车开疆之臣的无线充电技术,成为汽车制造商的必争之地。如果能够全面普及无线充电技术,就能够极大地提高电动汽车充电的便利性,不管是在充电过程,还是在续航上,都将大大增加人们对于电动汽车的接受度。可以说,成熟发展的无线充电技术,将会是电动汽车占领市场的重要举措。

据了解,奥迪、宝马、沃尔沃、奔驰、丰田等车厂,高通、中兴、西门子等通信公司都已开始研究电动汽车无线充电技术。今年1月,中兴通讯与国家电网宣布在成都组建合资公司,为电动汽车提供无线充电服务。中兴通讯无线充电技术原理为通过非接触的电磁感应方式进行电力传输,和传统的电动汽车充电桩、充电站不同,无线充电装置被埋入停车位或者路面的地下,整个系统只有充电器、发射垫,以及车辆底盘上的接收端。车辆仅需开到发射垫上方,无线充电即可开始。

在民用车市场,去年7月,宝马曾与戴姆勒达成合作,共同开发无线充电技术。此前宝马曾与西门子公司合作开发非接触充电技术,并于2011年在德国柏林进行测试。分析人士表示,研发汽车搭载的智能手机无线充电器技术将会是无线充电市场大众化的一个起点。目前,作为一般用途的无线充电器价格过高,而消费者优先选择购买装有无线充电器的汽车,生产企业提高成品和附件的生产能力后,无线充电器价格将有所下降。

尽管众多车企与电子巨头都对无线充电技术充满热情,但外界对于该项技术的可行性仍有诸多质疑。由于无线充电技术不管是采用电磁感应式还是磁场共振式,都有发射能量和接受能量的过程,因此,充电过程的安全性饱受质疑,人们都在担忧是否会造成辐射。与此同时,无线充电技术未形成统一的标准也让其未来发展饱受争议。与有线充电技术一样,标准化也是阻碍无线充电技术发展的障碍之一。电磁感应和磁场共振两种方式孰优孰劣还未产生定论,单就其中一种方式而言,不同的企业和研究组织也使用了不同的标准。

无线充电技术中所使用的线圈形状就是个问题。互不兼容的方式和设备,让没有统一标准的无线充电技术,难言发展和普及。一个统一的行业规范是很有必要的,因为无线充电涉及到诸多安全、可靠性的考虑。但是,电动汽车的无线充电仍然处于一个刚刚发展的阶段,关于技术的标准化工作正在进行。无线充电技术普及后,需要的成本问题也是关键。

无线充电技术的出现,必然会引爆电动汽车市场。电动汽车已经推出将近十年,始终不温不火,核心原因就在于电池成本高、充电难。如果无线充电技术被推广,不仅可以解决汽车充电问题,还可大大推动清洁能源进程。

设备的实现

无线充电技术在消费类市场表现出巨大的潜力。在不使用连线的情况下给电子设备充电不但可为便携式设备用户提供一种便利的解决方案,而且还让广大设计人员能够寻找到更具创新性的问题解决方法。许多电池供电型便携式设备均能受益于这种技术,从手机到电动汽车不一而足。

电感耦合方法可以实现高效和通用的无线充电。为了便于使用并且让设计人员和消费者都受益,无线充电联盟 (WPC) 制定出了一种标准。在供电设备(电力发射器,充电站)和用电设备(电力接收器,便携式设备)之间创建了互操作性。

WPC 成立于 2008 年,由亚洲、欧洲和美国的各行业公司组成,其中包括电子设备制造厂商和原始设备制造商 (OEM)。WPC 标准定义了电感耦合(线圈结构)的类型,以及低功耗无线设备所用的通信协议。在这种标准下工作的任何设备都可以与任何其他 WPC 兼容设备配对。这种方法的一个重要的好处是其利用这些线圈来实现电力发送器和电力接收器之间的通信。典型的应用图,请参见图 1。

WPC标准

WPC 标准下,无线传输的“低功耗”就是说功耗仅为 0~5W。达到这一标准范围的系统在两个平面线圈之间使用电感耦合来将电力从电力发送器传输给电力接收器。两个线圈之间的距离一般为 5mm。输出电压调节由一个全局数字控制环路负责,这时电力接收器会与电力发送器通信,并要求或多或少的功耗。该通信是一种通过反向散射调制从电力接收器到电力发送器的单向通信。在反向散射调制中,电力接收器线圈受到负载,从而改变电力发送器的电流消耗。我们对这些电流变化进行监控,并解调成两个设备协同工作所需的信息。

WPC 标准定义了系统的三个主要方面——提供电力的电力发送器、使用电力的电力接收器以及这两种设备之间的通信协议。下面,我们将详细介绍这三个方面。

电力发送器

电力传输方向始终是从电力发送器到电力接收器。电力发送器的关键电路是用于向电力接收器传输电力的一次线圈、驱动一次线圈的控制单元以及解调一次线圈电压或者电流的通信电路。我们对电力发送器设计的灵活性进行了限制,旨在向电力接收器提供一致的电力和电压电平。

电力接收器将自己作为电力发送器的一个兼容设备,同时也提供配置信息。一旦发射器开始电力传输,电力接收器就向电力发送器发送一些误差数据包,从而要求或多或少的电力。一旦接收到一个“终止电力”消息,或者如果 1.25 秒以上都没有接收到数据包,则电力发送器停止供电。没有电力传输时,电力发送器则进入低功耗待机模式。

WPC 规范允许使用固定和移动配置。单个固定线圈(称作类型 A1)为 TI 支持的解决方案。

电力发送器(其通常为一个平面用户将电力接收器放置在上面)连接至电源。符合 WPC 标准的设备线圈起到了一个 50% 占空比谐振半桥的作用,其输入为19-VDC(±1 V)。如果电力接收器需要或多或少的功率,则线圈频率会发生变化,但会保持在 110 到 205kHz 之间,具体取决于功率需求。

电力接收器

电力接收器通常为一种便携式设备。电力接收器的关键电路是用于从电力发送器接收电力的次级线圈、用于将 AC 转换为 DC 的整流电路、用于将未稳压 DC转换为经过稳压的 DC 的电源调节电路以及用于将信号调制到次级线圈的通信电路。电力接收器负责其身份认证和电源要求的所有通信,因为电力发送器只是一个“收听者”。

尽管为了让其符合 WPC 标准我们对电力发送器的设计进行了限制,但设计电力接收器时却可以有更多的自由。我们可以调节电力接收器的线圈尺寸,以满足设备的体积要求。利用 5-V、500-mA 输出的 70% 典型效率,我们对电力接收器的线圈电压进行全波整流。由于两个设备之间的通信是单向的,因此 WPC 选择电力接收器作为“述说者”。电感电能传输通过耦合一次到次级线圈的磁场工作。非耦合磁力线围绕一次线圈旋转,且只要磁力线不耦合寄生负载其便不会出现损耗(例如:金属的涡流损耗等)。

通信协议

通信协议包括模拟和数字声脉冲 (pinging);身份识别和配置以及电力传输。电力接收器放置在电力发送器上面时出现的典型启动顺序如下:

a 来自电力发送器的模拟 ping 检测到对象的存在。

b 来自电力发送器的数字 ping 为模拟 ping 的加长版,并让电力接收器有时间回复一个信号强度包。如果该信息强度包有效,则电力发送器会让线圈保持通电并进行下一步骤。

c 身份识别和配置阶段期间,电力接收器会发送一些数据包,对其进行身份识别,并向电力发送器提供配置和设置信息。

d 在电力传输阶段,电力接收器向电力发送器发送控制误差包,以增加或者减少电力。正常运行期间,每隔约 250ms 便发送这些包,而在大信号变化期间会每隔 32ms 发送一次。另外,在正常运行期间,电力发送器会每隔 5 秒钟便发送一次电力包。

e 为了终止电力传输,电力接收器会发送一条“终止充电”消息,或者 1.25 秒时长内都不进行通信。两种事件中的任何一个都会让电力发送器进入低功耗状态。

TI的WPC兼容解决方案

TI 是 WPC 的创始会员之一,并在制定稳健的无线充电规范方面起到了积极的作用。TI 利用三种新开发的 IC 同时为电力接收器和电力发送器提供可靠的解决方案。电力接收器使用 MSP430bq1010 和 bq25046 器件。电力发送器基于bq500110,其支持 A1 型(单线圈)结构。接收器和发射器 IC 均能够与其他WPC 兼容解决方案通用。

电力接收器中的 MSP430bq1010 处理所有逻辑功能和通信。板上模数转换器监控进入 bq25046 的电压电平以及从 bq25046 流出的电流电平。bq25046 向MSP430bq1010 提供负载电流信息,之后其使用这一信息来控制电力发送器的工作点。bq25046 拥有一个为 MSP430bq1010 和逻辑电路供电的低电流 3.3-V 低压降调节器 (LDO),而一个更大的 5.0-V LDO 能够向主输出提供高达 1A 的电流。

电力发送器解决方案通过 bq500110 实现。这种器件对来自电力接收器的串行数据进行解调和解码。控制电路首先确认电力接收器实际为一种 WPC 兼容设备,然后对电力发送器进行相应的配置。

TI 的 BQTESLA100LP EVM 套件将单独的发送器和接收器设计组合到一个包括了机械封装的一个套件中。该套件既可用于 IC 评估也可以用作设计实例。WPC 已确认这些电力发送器和接收器解决方案符合 1.0 版规范。无需使用软件来操作 EVM,其仅需要一个 19-V 输入。在高达 1A 电流条件下,EVM 套件的输出为 5V。发送器 EVM 包括多个 LED 选项,用于直观指示电力发送器状态。另外,两个蜂鸣器选项提供电力传输开始的声音提示。

结论

WPC 标准是一整套让制造厂商相信其组件可以与其他为电感电力传输而设计的各种 WPC 认证组件协调工作的指导原则,从而开发大量的解决方案。

相关词条

相关搜索

其它词条