分類
動态規劃一般可分為線性動規,區域動規,樹形動規,背包動規四類。
舉例:
線性動規:攔截導彈,合唱隊形,挖地雷,建學校,劍客決鬥等;
區域動規:石子合并,加分二叉樹,統計單詞個數,炮兵布陣等;
樹形動規:貪吃的九頭龍,二分查找樹,聚會的歡樂,數字三角形等;
背包問題:01背包問題,完全背包問題,分組背包問題,二維背包,裝箱問題,擠牛奶(同濟ACM第1132題)等;
應用實例:
最短路徑問題,項目管理,網絡流優化等;
POJ動态規劃題目列表:
容易:
1018,1050,1083,1088,1125,1143,1157,1163,1178,1179,1189,1191,1208,1276,1322,1414,1456,1458,1609,1644,1664,1690,1699,1740,1742,1887,1926,1936,1952,1953,1958,1959,1962,1975,1989,2018,2029,2039,2063,2081,2082,2181,2184,2192,2231,2279,2329,2336,2346,2353,2355,2356,2385,2392,2424。
不易:
1019,1037,1080,1112,1141,1170,1192,1239,1655,1695,1707,1733(區間減法加并查集),1737,1837,1850,1920(加強版漢羅塔),1934(全部最長公共子序列),1964(最大矩形面積,O(n*m)算法),2138,2151,2161,2178。
推薦:
1015,1635,1636,1671,1682,1692,1704,1717,1722,1726,1732,1770,1821,1853,1949,2019,2127,2176,2228,2287,2342,2374,2378,2384,2411。
概念意義
動态規劃問世以來,在經濟管理、生産調度、工程技術和最優控制等方面得到了廣泛的應用。例如最短路線、庫存管理、資源分配、設備更新、排序、裝載等問題,用動态規劃方法比用其它方法求解更為方便。
雖然動态規劃主要用于求解以時間劃分階段的動态過程的優化問題,但是一些與時間無關的靜态規劃(如線性規劃、非線性規劃),隻要人為地引進時間因素,把它視為多階段決策過程,也可以用動态規劃方法方便地求解。
動态規劃程序設計是對解最優化問題的一種途徑、一種方法,而不是一種特殊算法。不像搜索或數值計算那樣,具有一個标準的數學表達式和明确清晰的解題方法。動态規劃程序設計往往是針對一種最優化問題,由于各種問題的性質不同,确定最優解的條件也互不相同,因而動态規劃的設計方法對不同的問題,有各具特色的解題方法,而不存在一種萬能的動态規劃算法,可以解決各類最優化問題。因此讀者在學習時,除了要對基本概念和方法正确理解外,必須具體問題具體分析處理,以豐富的想象力去建立模型,用創造性的技巧去求解。我們也可以通過對若幹有代表性的問題的動态規劃算法進行分析、讨論,逐漸學會并掌握這一設計方法。
概念引入
多階段決策過程的最優化問題。
含有遞推的思想以及各種數學原理(加法原理,乘法原理等等)。
在現實生活中,有一類活動的過程,由于它的特殊性,可将過程分成若幹個互相聯系的階段,在它的每一階段都需要作出決策,從而使整個過程達到最好的活動效果。當然,各個階段決策的選取不是任意确定的,它依賴于當前面臨的狀态,又影響以後的發展,當各個階段決策确定後,就組成一個決策序列,因而也就确定了整個過程的一條活動路線,如圖所示:(看詞條圖)
這種把一個問題看作是一個前後關聯具有鍊狀結構的多階段過程就稱為多階段決策過程,這種問題就稱為多階段決策問題。
基本思想
動态規劃算法通常用于求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應于一個值,我們希望找到具有最優值的解。動态規劃算法與分治法類似,其基本思想也是将待求解問題分解成若幹個子問題,先求解子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,适合于用動态規劃求解的問題,經分解得到子問題往往不是互相獨立的。若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重複計算了很多次。如果我們能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,這樣就可以避免大量的重複計算,節省時間。我們可以用一個表來記錄所有已解的子問題的答案。不管該子問題以後是否被用到,隻要它被計算過,就将其結果填入表中。這就是動态規劃法的基本思路。具體的動态規劃算法多種多樣,但它們具有相同的填表格式。
基本概念
1.多階段決策問題
如果一類活動過程可以分為若幹個互相聯系的階段,在每一個階段都需作出決策(采取措施),一個階段的決策确定以後,常常影響到下一個階段的決策,從而就完全确定了一個過程的活動路線,則稱它為多階段決策問題。
各個階段的決策構成一個決策序列,稱為一個策略。每一個階段都有若幹個決策可供選擇,因而就有許多策略供我們選取,對應于一個策略可以确定活動的效果,這個效果可以用數量來确定。策略不同,效果也不同,多階段決策問題,就是要在可以選擇的那些策略中間,選取一個最優策略,使在預定的标準下達到最好的效果.
2.動态規劃問題中的術語
階段:把所給求解問題的過程恰當地分成若幹個相互聯系的階段,以便于求解,過程不同,階段數就可能不同.描述階段的變量稱為階段變量。在多數情況下,階段變量是離散的,用k表示。此外,也有階段變量是連續的情形。如果過程可以在任何時刻作出決策,且在任意兩個不同的時刻之間允許有無窮多個決策時,階段變量就是連續的。
在前面的例子中,第一個階段就是點A,而第二個階段就是點A到點B,第三個階段是點B到點C,而第四個階段是點C到點D。
狀态:狀态表示每個階段開始面臨的自然狀況或客觀條件,它不以人們的主觀意志為轉移,也稱為不可控因素。在上面的例子中狀态就是某階段的出發位置,它既是該階段某路的起點,同時又是前一階段某支路的終點。
在前面的例子中,第一個階段有一個狀态即A,而第二個階段有兩個狀态B1和B2,第三個階段是三個狀态C1,C2和C3,而第四個階段又是一個狀态D。
過程的狀态通常可以用一個或一組數來描述,稱為狀态變量。一般,狀态是離散的,但有時為了方便也将狀态取成連續的。當然,在現實生活中,由于變量形式的限制,所有的狀态都是離散的,但從分析的觀點,有時将狀态作為連續的處理将會有很大的好處。此外,狀态可以有多個分量(多維情形),因而用向量來代表;而且在每個階段的狀态維數可以不同。
當過程按所有可能不同的方式發展時,過程各段的狀态變量将在某一确定的範圍内取值。狀态變量取值的集合稱為狀态集合。
無後效性:我們要求狀态具有下面的性質:如果給定某一階段的狀态,則在這一階段以後過程的發展不受這階段以前各段狀态的影響,所有各階段都确定時,整個過程也就确定了。換句話說,過程的每一次實現可以用一個狀态序列表示,在前面的例子中每階段的狀态是該線路的始點,确定了這些點的序列,整個線路也就完全确定。從某一階段以後的線路開始,當這段的始點給定時,不受以前線路(所通過的點)的影響。狀态的這個性質意味着過程的曆史隻能通過當前的狀态去影響它的未來的發展,這個性質稱為無後效性。
決策:一個階段的狀态給定以後,從該狀态演變到下一階段某個狀态的一種選擇(行動)稱為決策。在最優控制中,也稱為控制。在許多問題中,決策可以自然而然地表示為一個數或一組數。不同的決策對應着不同的數值。描述決策的變量稱決策變量,因狀态滿足無後效性,故在每個階段選擇決策時隻需考慮當前的狀态而無須考慮過程的曆史。
決策變量的範圍稱為允許決策集合。
策略:由每個階段的決策組成的序列稱為策略。對于每一個實際的多階段決策過程,可供選取的策略有一定的範圍限制,這個範圍稱為允許策略集合。允許策略集合中達到最優效果的策略稱為最優策略。
給定k階段狀态變量x(k)的值後,如果這一階段的決策變量一經确定,第k+1階段的狀态變量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k階段的決策u(k)的值變化而變化,那麼可以把這一關系看成(x(k),u(k))與x(k+1)确定的對應關系,用x(k+1)=Tk(x(k),u(k))表示。這是從k階段到k+1階段的狀态轉移規律,稱為狀态轉移方程。最優化原理:作為整個過程的最優策略,它滿足:相對前面決策所形成的狀态而言,餘下的子策略必然構成“最優子策略”。一個問題滿足最優化原理也稱其擁有最優子結構性質。最優性原理實際上是要求問題的最優策略的子策略也是最優。讓我們通過對前面的例子再分析來具體說明這一點:從A到D,我們知道,最短路徑是A?B1?C2?D,這些點的選擇構成了這個例子的最優策略,根據最優性原理,這個策略的每個子策略應是最優:
A?B1?C2是A到C2的最短路徑,B1?C2?D也是B1到D的最短路徑。──事實正是如此,因此我們認為這個例子滿足最優性原理的要求。
基本結構
多階段決策問題中,各個階段采取的決策,一般來說是與時間有關的,決策依賴于當前狀态,又随即引起狀态的轉移,一個決策序列就是在變化的狀态中産生出來的,故有“動态”的含義,稱這種解決多階段決策最優化問題的方法為動态規劃方法。
基本模型
根據上例分析和動态規劃的基本概念,可以得到動态規劃的基本模型如下:
(1)确定問題的決策對象。(2)對決策過程劃分階段。(3)對各階段确定狀态變量。(4)根據狀态變量确定費用函數和目标函數。(5)建立各階段狀态變量的轉移過程,确定狀态轉移方程。
狀态轉移方程的一般形式:
一般形式:U:狀态;X:策略
順推:f[Uk]=opt{f[Uk-1]+L[Uk-1,Xk-1]}其中,L[Uk-1,Xk-1]:狀态Uk-1通過策略Xk-1到達狀态Uk的費用初始f[U1];結果:f[Un]。
倒推:
f[Uk]=opt{f[Uk+1]+L[Uk,Xk]}
L[Uk,Xk]:狀态Uk通過策略Xk到達狀态Uk+1的費用
初始f[Un];結果:f(U1)
适用條件
任何思想方法都有一定的局限性,超出了特定條件,它就失去了作用。同樣,動态規劃也并不是萬能的。适用動态規劃的問題必須滿足最優化原理和無後效性。
1.最優化原理(最優子結構性質)最優化原理可這樣闡述:一個最優化策略具有這樣的性質,不論過去狀态和決策如何,對前面的決策所形成的狀态而言,餘下的諸決策必須構成最優策略。簡而言之,一個最優化策略的子策略總是最優的。一個問題滿足最優化原理又稱其具有最優子結構性質。
2.無後效性将各階段按照一定的次序排列好之後,對于某個給定的階段狀态,它以前各階段的狀态無法直接影響它未來的決策,而隻能通過當前的這個狀态。換句話說,每個狀态都是過去曆史的一個完整總結。這就是無後向性,又稱為無後效性。
3.子問題的重疊性動态規劃将原來具有指數級時間複雜度的搜索算法改進成了具有多項式時間複雜度的算法。其中的關鍵在于解決冗餘,這是動态規劃算法的根本目的。動态規劃實質上是一種以空間換時間的技術,它在實現的過程中,不得不存儲産生過程中的各種狀态,所以它的空間複雜度要大于其它的算法。
實現問題
算法實現是比較好考慮的。但有時也會遇到一些問題,而使算法難以實現。動态規劃思想設計的算法從整體上來看基本都是按照得出的遞推關系式進行遞推,這種遞推相對于計算機來說,隻要設計得當,效率往往是比較高的,這樣在時間上溢出的可能性不大,而相反地,動态規劃需要很大的空間以存儲中間産生的結果,這樣可以使包含同一個子問題的所有問題共用一個子問題解,從而體現動态規劃的優越性,但這是以犧牲空間為代價的,為了有效地訪問已有結果,數據也不易壓縮存儲,因而空間矛盾是比較突出的。另一方面,動态規劃的高時效性往往要通過大的測試數據體現出來(以與搜索作比較),因而,對于大規模的問題如何在基本不影響運行速度的條件下,解決空間溢出的問題,是動态規劃解決問題時一個普遍會遇到的問題。
一個思考方向是盡可能少占用空間。如從結點的數據結構上考慮,僅僅存儲必不可少的内容,以及數據存儲範圍上精打細算(按位存儲、壓縮存儲等)。當然這要因問題而異,進行分析。另外,在實現動态規劃時,一個我們經常采用的方法是用一個與結點數一樣多的數組來存儲每一步的決策,這對于倒推求得一種實現最優解的方法是十分方便的,而且處理速度也有一些提高。但是在内存空間緊張的情況下,我們就應該抓住問題的主要矛盾。省去這個存儲決策的數組,而改成在從最優解逐級倒推時,再計算一次,選擇某個可能達到這個值的上一階段的狀态,直到推出結果為止。這樣做,在程序編寫上比上一種做法稍微多花一點時間,運行的時效也可能會有一些(但往往很小)的下降,但卻換來了很多的空間。因而這種思想在處理某些問題時,是很有意義的。
但有時,即使采用這樣的方法也會發現空間溢出的問題。這時就要分析,這些保留下來的數據是否有必要同時存在于内存之中。因為有很多問題,動态規劃遞推在處理後面的内容時,前面比較遠處的内容實際上是用不着的。對于這類問題,在已經确信不會再被使用的數據上覆蓋數據,從而使空間得以重複利用,如果能有效地使用這一手段,對于相當大規模的問題,空間也不至于溢出(為了求出最優方案,保留每一步的決策仍是必要的,這同樣需要空間)。
一般地說,這種方法可以通過兩種思路來實現:一種是遞推結果僅使用Data1和Data2這樣兩個數組,每次将Data1作為上一階段,推得Data2數組,然後,将Data2通過複制覆蓋到Data1之上,如此反複,即可推得最終結果。這種做法有一個局限性,就是對于遞推與前面若幹階段相關的問題,這種做法就比較麻煩;而且,每遞推一級,就需要複制很多的内容,與前面多個階段相關的問題影響更大。另外一種實現方法是,對于一個可能與前N個階段相關的問題,建立數組Data[0..N],其中各項為前面N個階段的保存數據。這樣不采用這種内存節約方式時對于階段k的訪問隻要對應成對數組Data中下标為kmod(N+1)的單元的訪問就可以了。這種處理方法對于程序修改的代碼很少,速度幾乎不受影響,而且需要保留不同的階段數也都能很容易實現。
當采用以上方法仍無法解決内存問題時,也可以采用對内存的動态申請來使絕大多數情況能有效出解。而且,使用動态内存還有一點好處,就是在重複使用内存而進行交換時,可以隻對指針進行交換,而不複制數據,這在實踐中也是十分有效的。
應用
常用軟件
MATLAB、LINGO
作用
在編程中常用解決最長公共子序列問題、矩陣連乘問題、凸多邊形最優三角剖分問題、電路布線等問題。
搜索
記憶化
給你一個數字三角形,形式如下:
找出從第一層到最後一層的一條路,使得所經過的權值之和最小或者最大.
無論對于新手還是老手,這都是再熟悉不過的題了,很容易地,我們寫出狀态轉移方程:
f[i][j]=a[i][j]+min{f[i+1][j],f[i+1][j+1]}(a[i][j]表示當前狀态,f[i][j]表示指标函數)
對于動态規劃算法解決這個問題,我們根據狀态轉移方程和狀态轉移方向,比較容易地寫出動态規劃的循環表示方法。但是,當狀态和轉移非常複雜的時候,也許寫出循環式的動态規劃就不是那麼簡單了。
成本管理
工期成本管理的目标是正确處理工期與成本的關系,使工期成本的總和達到最低值。一般來說,工期越短,工期措施成本越小;但當工期短至一定限度時,工期措施成本則會急劇上升。而工期損失則不然,因自然條件引起的工期損失,其損失額度相應較小,通常情況下不予賠償或賠償額度較小,該部分工期損失可不予考慮。因施工項目内部因素造成的工期損失,随着時間的推移,經驗的積累會逐漸減少。綜合工期成本的各種因素,就會找到一個工期成本為最低的理想點。這一點也就是工期最短并且成本最低的最優點。
網絡成本工期優化是指在既定的條件下,對初步拟定的網絡計劃方案,利用時差不斷調整和改善,使之達到工期最短、成本最低、資源最優的目的。動态規劃法是優化中引入動态規劃法建立數學模型,并利用遞推公式求解,從而尋求成本工期優化的最優目标,達到控制成本的目的。
推薦書籍
《DynamicProgramming》
ISBN:3540370137
【出版日期】2005年7月



















