定律
牛頓第一定律
任何一個物體在不受外力或受平衡力的作用時(Fnet=0),總是保持靜止狀态或勻速直線運動狀态,直到有作用在它上面的外力迫使它改變這種狀态為止。n①慣性大小隻與質量有關,與速度和接觸面的粗糙程度無關。n②質量越大,克服慣性做功越大;質量越小,克服慣性做功越小。 n③力不是保持物體運動狀态的原因,而是改變物體運動狀态的原因。 n
牛頓第二定律
物體的加速度跟物體所受的合外力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。
公式:F合=ma (單位:N(牛)或者千克米每二次方秒)N=(kg×m)/(s×s)
牛頓第三定律
兩個物體之間的作用力和反作用力,在同一直線上,大小相等,方向相反。n①力的作用是相互的。同時出現,同時消失。n②相互作用力一定是相同性質的力 n③作用力和反作用力作用在兩個物體上,産生的作用不能相互抵消。n④作用力也可以叫做反作用力,隻是選擇的參照物不同 n⑤作用力和反作用力因為作用點不在同一個物體上,所以不能求合力n表達式: F=-F'(F表示作用力,F'表示反作用力,負号表示反作用力F'與作用力F的方向相反)内容:一切物體在沒有受到力或合力為零的作用時,總保持靜止狀态或勻速直線運動狀态。
說明:物體都有維持靜止和作勻速直線運動的趨勢,因此物體的運動狀态是由它的運動速度決定的,沒有外力,它的運動狀态是不會改變的。物體的這種性質稱為慣性。所以牛頓第一定律也稱為慣性定律。第一定律也闡明了力的概念。明确了力是物體間的相互作用,指出了是力改變了物體的運動狀态。因為加速度是描寫物體運動狀态的變化,所以力是和加速度相聯系的,而不是和速度相聯系的。在日常生活中不注意這點,往往容易産生錯覺。
注意:牛頓第一定律并不是在所有的參照系裡都成立,實際上它隻在慣性參照系裡才成立。因此常常把牛頓第一定律是否成立,作為一個參照系是否慣性參照系的判據。
動量
定義
質點的質量m與其速度v的乘積(mv)。動量是矢量,用符号p表示。質點組的動量為組内各質點動量的矢量和。物體的機械運動都不是孤立地發生的,它與周圍物體間存在着相互作用,這種相互作用表現為運動物體與周圍物體間發生着機械運動的傳遞(或轉移)過程,動量正是從機械運動傳遞這個角度量度機械運動的物理量,這種傳遞是等量地進行的,物體2把多少機械運動(動量)傳遞給物體1,物體2将失去等量的動量,傳遞的結果是兩者的總動量保持不變。從動力學角度看,力反映了動量傳遞快慢的情況。與實物一樣,電磁場也具有動量。例如光子的動量為p=h/(2π)k,其中h為普朗克常量,k為波長,其大小為k=(2π)/λ (λ 為波長),方向沿波傳播方向。在國際單位制中,動量的單位為千克·米/秒(kg·m/s)。
動量守恒定律
動量守恒定律是最早發現的一條守恒定律,它起源于16~17世紀西歐的哲學家們對宇宙運動的哲學思考。
觀察周圍運動着的物體,我們看到它們中的大多數,例如跳動的皮球、飛行的子彈、走動的時鐘、運轉的機器,都會停下來。看來宇宙間運動的總量似乎在減少。整個宇宙是不是也像一架機器那樣,總有一天會停下來呢?但是,千百年來對天體運動的觀測,并沒有發現宇宙運動有減少的迹象。生活在16、17世紀的許多哲學家認為,宇宙間運動的總量是不會減少的,隻要能找到一個合适的物理量來量度運動,就會看到運動的總量是守恒的。這個合适的物理量到底是什麼呢?
法國哲學家兼數學家、物理學家笛卡兒提出,質量和速率的乘積是一個合适的物理量。可是後來,荷蘭數學家、物理學家惠更斯(1629—1695)在研究碰撞問題時發現:按照笛卡兒的定義,兩個物體運動的總量在碰撞前後不一定守恒。
牛頓在總結這些人工作的基礎上,把笛卡兒的定義作了重要的修改,即不用質量和速率的乘積,而用質量和速度的乘積,這樣就找到了量度運動的合适的物理量。牛頓把它叫做“運動量”,就是我們現今說的動量。1687年,牛頓在他的《自然哲學的數學原理》一書中指出:某一方向的運動的總和減去相反方向的運動的總和所得的運動量,不因物體間的相互作用而發生變化;還指出了兩個或兩個以上相互作用的物體的共同重心的運動狀态,也不因這些物體間的相互作用而改變,總是保持靜止或做勻速直線運動。
動量守恒定律的适用範圍比牛頓運動定律更廣
近代的科學實驗和理論分析都表明:在自然界中,大到天體間的相互作用,小到如質子、中子等基本粒子間的相互作用,都遵守動量守恒定律。因此,它是自然界中最重要、最普遍的客觀規律之一,比牛頓運動定律的适用範圍更廣。下面舉一個牛頓運動定律不适用而動量守恒定律适用的例子。
在我們考察光的發射和吸收時,會看到這樣一種現象:在宇宙空間中某個地方有時會突然發出非常明亮的光,這就是超新星。可是它很快就逐漸暗淡下來。光從這樣一顆超新星出發到達地球需要幾百萬年,而相比之下超新星從發光到熄滅的時間就顯得太短了。
當光從超新星到達地球時,它給地球一個輕微的推動,而與此同時地球卻無法給超新星一個輕微的推動,因為它已經消失了。因此,如果我們想像一下地球與超新星之間的相互作用,在同一瞬間就不是大小相等、方向相反了。這時,牛頓第三定律顯然已不适用了。
雖然如此,動量守恒定律還是正确的。不過,我們必須把光也考慮在内。當超新星發射光時,星體反沖,得到動量,同時光也帶走了大小相等而方向相反的動量。等經過幾百萬年之後光到達地球時,光把它的動量傳給了地球。這裡要注意的是:動量不僅可以為實物所攜帶,而且可以随着光輻射一起傳播。當我們考慮到上述這點時,動量守恒定律還是正确的。
相關意義
開辟新時代
牛頓經典力學體系的建立開辟了科學發展的一個新天地、新時代。經典力學的廣泛傳播和運用對人們的生活和思想産生了重大影響,在一定程度上推動了人類社會的發展進步。但經典力學存在的固有缺點和局限性也在一定程度上阻礙了人類社會的進步,産生了消極作用。本文将以經典力學的建立背景為起點,進一步用辯證的方法分析經典力學在人類曆史與現實中發揮的作用與産生的不良影響。
17世紀的歐洲,經過許多科學家的努力,在天文學和力學方面積累了豐富資料的基礎上,英國科學家牛頓實現了天上力學和地上力學的綜合,形成了統一的力學體系——經典力學。經典力學體系的建立,是人類認識自然及曆史的第一次大飛躍和理論的大綜合,它開辟了一個新的時代,并對科學發展的進程以及人類生産生活和思維方式産生極其深刻的影響。牛頓經典力學的建立是科學形态上的重要變革,标志着近代理論自然科學的誕生,并成為其他各門自然科學的典範。
條件和原因
牛頓經典力學體系的建立得益于已有的科學成就。哥白尼、伽利略、開普勒、笛卡爾等人在天文學、力學、光學、數學等方面的貢獻,為經典力學奠定了堅實的基礎,特别是伽利略與開普勒對牛頓經典力學體系的建立更是有着極其重要的影響。
伽利略通過對自由落體的研究,已經發現了慣性運動和在重力作用下的勻加速運動,奠定了牛頓第一定律和第二定律的基本思想。伽利略關于抛物體運動定律的發現,對牛頓萬有引力的學說也有深刻的啟示作用。開普勒所發現的行星運動定律則是牛頓萬有引力學說産生的最重要前提。牛頓非常善于廣泛汲取前人的科學成果并綜合運用多方面的知識進行跨學科的研究,通過吸收前人的科學研究成果,牛頓為經典力學體系的建立充實了知識準備。
雖然經典力學建立在豐富的科學經驗之上,但經典力學的建立和牛頓的個人原因有不可分割的關系。牛頓從青少年時代就對科學抱有濃厚的興趣、極強的求知欲和探索欲望,學習非常勤奮。但他從不死讀書,喜歡通過實驗來取得真知,并親自動手設計和制作了許多機械裝置和用品,這使他打下了廣博而紮實的知識基礎,同時也具有創新意識和動手能力。雖然牛頓是天才,智力水平很高,但他的天才還來源于他的勤奮。他在研究中十分投入,而且常常夜以繼日地學習、工作。這些都培養和鍛煉了牛頓的科學精神,為日後的研究打下了堅實的基礎。
牛頓經典力學的建立,還與他所處的時代和社會有關。歐洲經過16世紀百餘年的宗教和政治改革的大變動之後,到17世紀下半葉進入了一個政治上轉為安甯,經濟上趨于繁榮的時期。生産實踐為力學研究提出了許多問題,這就給科學的發展以推動力。經過16世紀的宗教改革運動和17世紀中後期的資産階級革命運動,英國科學家擁有了當時世界上最為寬松自由的學術環境。學術環境的改變,使得對力學的研究擺脫了不必要的束縛,催生了經典力學體系。
個人因素,前人經驗,寬松的學術環境和生産實踐的發展,構成了經典力學體系建立的條件和基礎。
影響
不難預料,經典力學的巨大成功将對人類社會在各方面将會産生不可估量的影響。
(一)對自然觀念的影響
牛頓經典力學的成就之大使得它得以廣泛傳播,深深地改變了人們的自然觀。人們往往用力學的尺度去衡量一切,用力學的原理去解釋一切自然現象,将一切運動都歸結為機械運動,一切運動的原因都歸結為力,自然界是一架按照力學規律運動着的機器。這種機械唯物主義自然觀在當時是有進步作用的。由于它把自然界中起作用的原因都歸結為自然界本身規律的作用,有利于促使科學家去探索自然界的規律。它能刺激人們運用分析和解剖的方式,從觀察和實驗中取得更多的經驗材料,這對科學的發展來說也是必要的。但這種思維方式在一定程度上忽視了理論思維的作用,忽視了事物之間的聯系和發展,因而又有着嚴重的缺陷。
(二)對自然科學的影響
牛頓經典力學的内容和研究方法對自然科學,特别是物理學起了重大的推動作用,但也存在着消極影響。
牛頓建立的經典力學體系以及他的力學研究綱領所獲得的成功,在當時使科學家們以為牛頓經典力學就是整個物理學,甚至是全部自然科學的可靠的最終的基礎。在相當長的曆史時期内,牛頓經典力學名着《自然哲學的數學原理》一書成為了科學家們共同遵循的規範,它支配了當時整個自然科學發展的進程。他研究問題的科學方法和原理也普遍得到贊賞和采用。牛頓研究經典力學的科學方法論和認識論,如運用分析和綜合相結合的方法與公理化方法及科學的簡單性原則、尋求因果關系中相似性統一性原則、以實驗為基礎發現物體的普遍性原則和正确對待歸納結論的原則,對後世科學的發展也影響深遠。
對社會科學的影響
經典力學不但對自然科學産生了很大影響,在社會科學方面,特别是對哲學和人類思想發展,也産生了重大影響。
在經典力學的直接影響下,英國的霍布斯和洛克建立和發展了機械唯物主義哲學,并由于其強大的影響力,使得唯物論從宗教神學那裡争得了發言權,并在随後形成了人類曆史上唯物主義和唯心主義鬥争最為激烈的一段時期。經過康德和黑格爾對辯證法和機械唯物主義的研究和發展,以及馬克思和恩格斯對哲學已有研究成果的吸收,結合當時科學發展成果,最終建立了唯物主義辯證法。唯物主義辯證法的建立,在很大程度上得益于牛頓經典力學體系的建立。
近現代科學和哲學是發轫于經典力學的,正是從牛頓建立經典力學開始,人類在思想觀念上才開始真正走向科學化和現代化,而它對人類思想領域的影響也是極其廣泛而深刻的。
得失
基本概述
事物總是辯證統一、一分為二的。雖然科學家在運用牛頓經典力學方法及成果時使自然科學得到了長足發展,但當時人們在接受和運用牛頓的科學成果之時,沒有搞清它的适用範圍,也作出了不适當的誇大。例如,當初有科學家認為所有涉及到的物理學問題都可以歸結為不變的引力和斥力,因而隻要把自然現象轉化為力就行了。結果到後來,“力”成了對現象和規律缺乏認識的避難所,把當時無法解釋的各種現象都冠以各種不同力的名稱。因此,牛頓經典力學的内容及其研究方法在推動自然科學發展的同時,也有産生了很大的消極影響。
偉大成就
經典力學把人類對整個自然界的認識推進到一個新水平,牛頓把天上運動和地上運動統一起來,從力學上證明了自然界的統一性,這是人類認識自然曆史的第一次大飛躍和理論大綜合,它開辟了一個新時代,并對學科發展的進程以及後代科學家們産生了極其深刻的影響。
經典力學的建立首次明确了一切自然科學理論應有的基本特征,這标志着近代理論自然科學的誕生,也成為其他各門自然科學的典範。牛頓運用歸納與演繹、綜合與分析的方法極其明晰地得出了完善的力學體系,被後人稱為科學美的典範,顯示出物理學家在研究物理時,都傾向于選擇和諧與自洽的體系,追求最簡潔、最理想的形式。
經典力學的建立對自然科學和科技的發展、社會進步具有深遠影響。一是科學的研究方法推廣應用到物理學的各個分支學科上,對經典物理學的建立意義重大;二是經典力學與其他基礎科學相結合産生了許多交叉學科,促進了自然科學的進一步發展。三是經典力學在科學技術上有廣泛的應用,促進了社會文明的發展。
适用範圍及其局限性
經典力學的應用受到物體運動速率的限制,當物體運動的速率接近真空中的光速時,經典力學的許多觀念将發生重大變化。如經典力學中認為物體的質量不僅不變,并且與物體的速度或能量無關,但相對論研究則表明,物體的質量将随着運動速率的增加而增大,物體的質量和能量之間存在着密切的聯系。但當物體運動的速度遠小于真空中的光速時,經典力學仍然适用。
牛頓運動定律不适用于微觀領域中物質結構和能量不連續現象。19世紀和20世紀之交,物理學的三大發現,即X射線的發現、電子的發現和放射性的發現,使物理學的研究由宏觀領域進入微觀領域,特别是20世紀初量子力學的建立,出現了與經典觀念不同的新觀念。例如:量子力學的研究表明,微觀粒子既表現為粒子性又表現為波動性,粒子的能量等物理量隻能取分立的數值,粒子的速度和位置具有不确定性,粒子的狀态隻能用粒子在空間出現的概率來描述等。但量子力學的建立并不是對經典力學的否定,對于宏觀物體的運動,量子現象并不顯着,經典力學依然适用。
現代物理學的發展,并沒有使經典力學失去存在的價值,隻是拓寬了人們的視野,經典力學仍将在它适用的範圍内大放異彩。



















