特殊三角函數

特殊三角函數

學科屬于數學
特殊三角函數是性質特殊的一類三角函數的總稱。特殊三角函數值一般指在0,30°,45°,60°,90°,180°角下的正餘弦值。這些角度的三角函數值是經常用到的。并且利用兩角和與差的三角函數公式,可以求出一些其他角度的三角函數值。[1]
    中文名:特殊三角函數 外文名: 适用領域: 所屬學科: 英文名:special trigonometric function 學科:數學 屬于:函數 應用:數學、物理、天文等

函數名

函數名:正弦、餘弦、正切、餘切、正割、餘割。

在平面直角坐标系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐标為(x,y)有

正弦函數sinθ=y/r

餘弦函數cosθ=x/r

正切函數tanθ=y/x

餘切函數cotθ=x/y

正割函數secθ=r/x

餘割函數cscθ=r/y

正弦(sin):角α的對邊比上斜邊

餘弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

餘切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

餘割(csc):角α的斜邊比上對邊

特殊角函數

角度a:0°、30°、45°、60°、90°、120°、180°

sina 0 1/2 √2/2 √3/2 1 √3/2 0

cosa 1 √3/2 √2/2 1/2 0 -1/2 -1

tana 0 √3/3 1 √3 無限大 -√3 0

cota / √3 1 √3/3 0 -√3/3 /

倒數關系

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的關系

tanα=sinα/cosα

cotα=cosα/sinα

平方關系

(sinα)^2+(cosα)^2=1

1+(tanα)^2=(secα)^2

1+(cotα)^2=(cscα)^2

以下關系,函數名不變,符号看象限

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

以下關系,奇變偶不變,符号看象限

sin(90°-α)=cosα

cos(90°-α)=sinα

tan(90°-α)=cotα

cot(90°-α)=tanα

sin(90°+α)=cosα

cos(90°+α)=sinα

tan(90°+α)=-cotα

cot(90°+α)=-tanα

sin(270°-α)=-cosα

cos(270°-α)=-sinα

tan(270°-α)=cotα

cot(270°-α)=tanα

sin(270°+α)=-cosα

cos(270°+α)=sinα

tan(270°+α)=-cotα

cot(270°+α)=-tanα

積化和差公式

sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]

cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]

cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]

sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)]

和差化積公式

sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]

sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]

cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]

cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2]

三倍角公式

sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)

兩角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)

上一篇:雲交易

下一篇:導數表

相關詞條

相關搜索

其它詞條