通項公式
遞推公式
斐波那契數列:0,1,1,2,3,5,8,13,21,34,55,89,144,...
如果設F(n)為該數列的第n項(n∈N*),那麼這句話可以寫成如下形式:
顯然這是一個線性遞推數列。
黃金分割
有趣的是:這樣一個完全是自然數的數列,通項公式卻是用無理數來表達的。而且當n趨向于無窮大時,後一項與前一項的比值越來越逼近黃金分割0.618.(或者說後一項與前一項的比值小數部分越來越逼近黃金分割0.618、前一項與後一項的比值越來越逼近黃金分割0.618)
1÷1=1,2÷1=2,3÷2=1.5,5÷3=1.666...,8÷5=1.6,…………,89÷55=1.6181818…,…………233÷144=1.618055…75025÷46368=1.6180339889…...
越到後面,這些比值越接近黃金比.
與黃金分割的證明
a[n+2]=a[n+1]+a[n]。
兩邊同時除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]。
若a[n+1]/a[n]的極限存在,設其極限為x,
則lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。
所以x=1+1/x。
即x²=x+1。
所以極限是黃金分割比。
相關特性
平方與前後項
從第二項開始,每個奇數項的平方都比前後兩項之積少1,每個偶數項的平方都比前後兩項之積多1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(注:奇數項和偶數項是指項數的奇偶,而并不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)
證明經計算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)
與集合子集
斐波那契數列的第n+2項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
求和
奇數項求和
偶數項求和
平方求和
加減求和
和項數公式
奇數項與某兩項的平方
偶數項與某兩項的平方
隔項關系
f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m)[n〉m≥-1,且n≥1]
兩倍項關系
f(2n)/f(n)=f(n-1)+f(n+1)



















