質子交換膜燃料電池

质子交换膜燃料电池

一种燃料电池
质子交换膜燃料电池(protonexchangemembranefuelcell,英文简称PEMFC)是一种燃料电池,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。
    中文名:质子交换膜燃料电池 外文名: 所属品牌: 英文名:proton exchange membrane fuel cell 英文简称:PEMFC 定义:一种燃料电池 所属学科:能源学 别名:聚合物电解质燃料电池 简称:PEMFC

概述

质子交换膜燃料电池(proton exchange membrane fuel cell,英文简称PEMFC)是一种燃料电池,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发

生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。

两电极的反应分别为:

阳极(负极):2H2-4e=4H+

阴极(正极):O2+4e+4H+=2H2O

注意所有的电子e都省略了负号上标。由于质子交换膜只能传导质子,因此氢质子可直接穿过质子交换膜到达阴极,而电子只能通过外电路才能到达阴极。当电子通过外电路流向阴极时就产生了直流电。以阳极为参考时,阴极电位为1.23V。也即每一单电池的发电电压理论上限为1.23V。接有负载时输出电压取决于输出电流密度,通常在0.5~1V之间。将多个单电池层叠组合就能构成输出电压满足实际负载需要的燃料电池堆(简称电堆)。

电堆由多个单体电池以串联方式层叠组合而成。将双极板与膜电极三合一组件(MEA)交替叠合,各单体之间嵌入密封件,经前、后端板压紧后用螺杆紧固拴牢,即构成质子交换膜燃料电池电堆,如附图所示。叠合压紧时应确保气体主通道对正以便氢气和氧气能顺利通达每一单电池。电堆工作时,氢气和氧气分别由进口引入,经电堆气体主通道分配至各单电池的双极板,经双极板导流均匀分配至电极,通过电极支撑体与催化剂接触进行电化学反应。

电堆的核心是MEA组件和双极板。MEA是将两张喷涂有Nafion溶液及Pt催化剂的碳纤维纸电极分别置于经预处理的质子交换膜两侧,使催化剂靠近质子交换膜,在一定温度和压力下模压制成。双极板常用石墨板材料制作,具有高密度、高强度,无穿孔性漏气,在高压强下无变形,导电、导热性能优良,与电极相容性好等特点。常用石墨双极板厚度约2~3.7mm,经铣床加工成具有一定形状的导流流体槽及流体通道,其流道设计和加工工艺与电池性能密切相关。

工作原理

燃料电池的工作过程实际上是电解水的逆过程,其基本原理早在1839年由英国律师兼物理学家威廉.罗泊特.格鲁夫(William Robert Grove)提出,他是世界上第一位实现电解水逆反应并产生电流的科学家。一个半世纪以来,燃料电池除了被用于宇航等特殊领域外,极少受到人们关注。只是到近十几年来,随着环境保护、节约能源、保护有限自然资源的意识的加强,燃料电池才开始得到重视和发展。

PEMFC技术是目前世界上最成熟的一种能将氢气与空气中的氧气化合成洁净水并释放出电能的技术:

1)氢气通过管道或导气板到达阳极,在阳极催化剂作用下,氢分子解离为带正电的氢离子(即质子)并释放出带负电的电子。

2)氢离子穿过电解质(质子交换膜)到达阴极;电子则通过外电路到达阴极。电子在外电路形成电流,通过适当连接可向负载输出电能。

3)在电池另一端,氧气(或空气)通过管道或导气板到达阴极;在阴极催化剂作用下,氧与氢离子及电子发生反应生成水燃料电池有多种,各种燃料电池之间的区别在于使用的电解质不同。质子交换膜燃料电池以质子交换膜为电解质,其特点是工作温度低(约70-800C),启动速度快,特别适于用作动力电池。电池内化学反应温度一般不超过80度,故称为“冷燃烧”。

优点

(1)能量转化效率高。通过氢氧化合作用,直接将化学能转化为电能,不通过热机过程,不受卡诺循环的限制。

(2)可实现零排放。其唯一的排放物是纯净水(及水蒸气),没有污染物排放,是环保型能源。

(3)运行噪声低,可靠性高。PEMFC电池组无机械运动部件,工作时仅有气体和水的流动。

(4)维护方便。PEMFC内部构造简单,电池模块呈现自然的“积木化”结构,使得电池组的组装和维护都非常方便;也很容易实现“免维护”设计。

(5)发电效率受负荷变化影响很小,非常适合于用作分散型发电装置(作为主机组),也适于用作电网的“调峰”发电机组(作为辅机组)。

(6)氢是世界上最多的元素,氢气来源极其广泛,是一种可再生的能源资源,取之不尽,用之不绝。可通过石油、天然气、甲醇、甲烷等进行重整制氢;也可通过电解水制氢、光解水制氢、生物制氢等方法获取氢气。

(7)氢气的生产、储存、运输和使用等技术目前均已非常成熟、安全、可靠。

应用

质子交换膜燃料电池作为车载新型动力源具有广阔的应用前景而备受关注。流场板是燃料电池的核心部件之一,起分配反应气体、移除水分与杂质和传导电子等作用。目前对质子交换膜燃料电池流场方面的研究,大多针对常规流道进行了尺寸和流场布置方式的优化,部分研究在流道内部添加不同形式的堵块以增强气体传质,或将多孔介质材料应用于流场板,或设计新型的三维网格流场结构,通过此类方式来优化燃料电池的水热管理,强化传质效果以提高燃料电池的性能。

居高不下的成本已成为车用质子交换膜燃料电池商业化的最大阻碍.其中,用于阴极氧还原反应的Pt基贵金属催化剂的成本占比最高,降低Pt用量是控制燃料电池成本的关键。

发展概况

PEMFC研究开发领域的权威机构是加拿大的Ballard能源系统公司。1989年,该公司在加拿大国防部资助下,从美国国防部购买了燃料电池技术。经过十多年的研究开发,成功地研制出了多种系列的PEMFC。1994年以来,Ballard公司先后与奔驰、大众、通用、福特、丰田、日产等著名汽车公司合作,开发出多种PEMFC汽车。

从1997年起,Ballard公司与奔驰、福特等公司共同投资建立了PEMFC发动机公司,在温哥华和多伦多,年产20万台电动车发动机的两个生产企业已在建设之中,计划2003年把PEMFC电动车正式推向市场。Ballard公司还与美国、法国的大型供电公司共同投资组建了合资企业,生产250KW级分散型PEMFC电站设备。这些公司的建立标志着PEMFC氢能源系统已走出实验室,进入了加速产业化的阶段。在美国,Plug-Power、H-Power等公司生产的以天然气为燃料的5-10KW PEMFC小型电站已经投放市场,这种电站适用作家庭电站、应急电源、不间断电源。

除美国、加拿大外,日本、德国、英国、意大利、俄罗斯等国以及一些著名跨国企业也加入了研制PEMFC系统和PEMFC电动车的行列。自2000年下半年石油价格问题引起各国严重关注以来,发达国家(特别是美国)都大大加强了对燃料电池技术商业化的投入,仅美国能源部的研究经费预算就超过1亿美元,大大超出前一年度的预算;而且,研究重点具有明显的产业化导向,如:相关材料部件,应用开发,行业标准,环境配套,发展战略,市场策略等。

在我国,PEMFC和电动车被列入“九五”国家科技攻关计划,氢能的规模制备、储运及相关燃料电池的基础研究”也已入选2000年“国家重点基础研究项目”。PEMFC电动车还被列为面向产业化的国家“十五”“863”重大科技攻关专项和上海市“十五”重大科技攻关项目。

2010年,山东东岳集团宣布,中国自主研发的氯碱用全氟离子膜、燃料电池膜实现国产化。历经8年科研攻关,打破了美国、日本长期对该项技术的垄断。与此同时,“东岳”完成的用于制造燃料电池核心材料磺酸树脂离子膜的年产500吨的生产装置已经建成投产,解决了氢燃料电池生产的重大瓶颈,我国由此成为世界上第二个拥有该项技术和产业化能力的国家。

相关词条

相关搜索

其它词条