发展沿革
研发背景
F/A-18的发展史,最早可以回溯到1972年时,在当年展开的美国空军轻型战机竞标中,F/A-18系列战机的原型机YF-17在竞争总败于YF-16。但后来被继续发展舰载攻击机的美国海军看重,最终在美国海军中得以继续研发。
1975年1月13日,由诺斯罗普公司设计的YF-17在ACF((AerialCombatFighter,空战战斗机)项目中被对手通用动力的YF-16击败,原因是YF-16的速度比YF-17略快,且其安装的F-100发动机已被F-15采用,可降低维护费用。YF-16即是后来大名鼎鼎的F-16战斗机,产量超过4500架,至今仍未停产。
失去了美国空军ACF合同之后,诺斯罗普公司原本打算就此打住,但美国海军对新战机的需求又使YF-17获得了一线生机。因为70年代初,“雄猫”项目。
美国国会将原本用于VFAX的资金转移到一个新项目——NACF(NavyAirCombatFighter,海军空战战斗机)上,并指示海军密切关注美国空军LWF(LightweightFighter,轻型战斗机)/ACF项目的竞争结果,并将参加竞标的两种飞机为NACF候选机型。如果一切顺利的话,NACF将会是F-16的舰载型,但当时多数的美国海军军官的认为F-14能满足所有需求,他们既不需要VFAX也不需要NACF。
在重重阻力下,美国海军仍持续推进NACF项目,并在1974年9月颁布了需求书。遭遇研发困难,成本不断超支,于是美国海军启动了VFAX(NavalFighterAttackExperimental,舰载战斗攻击机)项目。
VFAX被设想成一种能取代F-4“鬼怪”、A-4“天鹰”、A-7“海盗II”的多用途战斗机,格鲁曼也提交了“雄猫”的简化型(F-14X)参与竞标,但1974年5月10日众议院军事委员会宣布不会采购任何“雄猫”的简化型,VFAX必须要是一种全新的飞机。1974年8月美国国会考虑到当时的预算无法再担负另一个重大战机研发项目,通知美国海军VFAX项目将被取消。
在正式需求书发布的同时,美国海军也宣布将选择单一承包商来研制NACF。诺斯罗普认为YF-17会是NACF的有力竞争者,因为美国海军在传统上倾向双发构型以增加安全性,并且YF-17有更大的潜力发展成为装备雷达的多用途战斗机。
但是诺斯罗普没有研制舰载机的经验,所以他们接受了麦道公司的提议,合作为NACF项目研发YF-17的舰载型。两家公司签订了协议,条款规定麦道公司承接美国海军的合同的话,诺斯罗普将是最大的分包商,并且诺斯罗普拥有该机陆基型的全部出口权利。
通用动力同样想凭借F-16的舰载型参与竞争,通用动力也没有舰载机的研制经验,于是与LTV(凌-特科姆-沃特,总部同样在达拉斯沃斯堡)组成团队,共同研制YF-16的舰载型参加NACF的竞争。YF-16海军型具有美国空军不做要求的超视距雷达。两家公司达成协议:如果美国空军和海军都选择了YF-16,通用动力将成为空军的主承包商,LTV则是海军的主承包商。
研发计划
1975年5月2日美国海军宣布诺斯罗普/麦道团队获胜,美国海军认为双发布局更适宜海上飞行,另外YF-17的多用途发展潜力更大。
根据最初的计划,诺斯罗普/麦道将研发三种相近的型号——单座的F-18接替F-4“鬼怪”的空战任务,单座的A-18接替A-7“海盗II”的攻击任务,另外还有双座TF-18同型教练机。F-18和A-18使用相同的机身和发动机,但航电和挂架不同,双座TF-18A保留了F-18A的全部作战能力和武器,但减少了内部载油量。
最终经过论证F-18和A-18最终统一成一种型号,在当时国防部的新闻稿中被称为F/A-18A,直到1984年成为正式编号。双座教练型的编号随之改为TF/A-18A,后来又变成F/A-18B。
尽管没有任何订单,诺斯罗普仍继续研发F-18L陆基型,由于不需要上舰,该机比舰载型轻得多,性能更好。
试飞情况
1975年11月美国海军与通用电气签订了F404涡扇发动机的研制合同,1976年1月22日向麦道订购了9架单座和2架双座全尺寸研发(FSD)飞机,1978年7月FSD原型机首飞。
为了对F-18有个直观的印象,美国海军借用了第二架YF-17在加州木古角的太平洋导弹测试中心、马里兰州帕图森河海军试飞中心、加州中国湖海军武器中心进行试飞。1978年9月13日第一架FSDF-18A(BuNo160775)在圣路易斯工厂下线。11月8日该机在圣路易斯兰伯特机场进行了首飞,试飞员时杰克·E·克林斯,克林斯评价原型机容易操控且非常稳定。
1979年1月开始大多数的试飞工作移至马里兰州帕图森河海军试飞中心进行,9架F-18A和2架TF-18A双座FSD投入了紧张的试飞工作中去。海军飞行员评价“大黄蜂”稳定性很好,特别是在着陆进场时。
F-18AFSD飞机一共制造了9架,1979年10月30日第3架FSD(BuNo160777)开始在“美国”号航母(CV-66)上进行舰载资格试飞,进行得很顺利。在舰载资格试飞进行时,美国海军决定不再把“大黄蜂”分成战斗机和攻击机两种型号,该机性能强大到足以担负双重任务,并把原先决定换装F-18的VF(舰载战斗机)中队和换装A-18的VA(舰载攻击机)中队统一成VFA(舰载战斗攻击机)中队。
1979-81年间“大黄蜂”的研发成本不断上升,国会对此开始关注。美国海军/海军陆战队原先公布的订购数量为780-1,366架(最后削减至1,157架),而作为低成本轻型战斗机的F/A-18价格逼近格鲁曼F-14“雄猫”。1980年4月第一架生产型“大黄蜂”首飞。1984年4月1日国防部的公告中正式采用了“F/A”这个怪异的前缀,而在麦道公司的文档中还是F-18,从此F-18就开始被称为F/A-18。
技术特点
F/A-18是一种超音速的多用途战斗/攻击机,主要特点是可靠性和维护性好,生存能力强,大仰角飞行性能好以及武器投射精度高。据介绍,该机的机体是按6000飞行小时的使用寿命设计的,机载电子设备的平均故障间隔为30飞行小时,雷达的平均故障间隔时间为100小时,电子设备和消耗器材中有98%有自检能力。
到目前为止,F/A-18共有9个型别,有单座的,也有双座的.出口加拿大的编号为CF-18A,澳大利亚的有F/A-18A/B,西班牙的编号为EF-18,还有一种供出口用的多用途岸基型为F/A-18L型。F/A-18A为基本型,是一种单座战斗/攻击机主要用于护航和舰队防空;如果换装部分武器后即为攻击机,可执行对地攻击任务。
结构布局
F-18战斗机重视可靠性和维修性,机体的使用寿命按6000飞行小时设计,其中包括2000次弹射起飞和拦阻着陆。机载电子设备的平均故障间隔为30飞行小时,雷达的平均故障间隔时间为100小时。电子设备和消耗器材中有98%有自检能力。
布局上采用双发后掠翼和双立尾的总体布局,翼面积为37.16平方米,以改善低速性能。机翼为悬臂式的中单翼,后掠角不大,前缘装有全翼展机动襟翼,后缘内侧有液压动作的襟翼和副冀,前后缘襟翼的偏转均由计算机控制.自动改变机翼弯度,以便在整个性能包线内达到最佳升阻比。
后缘外侧的副翼可作为襟副翼使用进一步增强低速操控性,襟翼和副翼也可差动用于滚转控制。停降在舰上时,外翼段可以折叠(副翼位于外冀后缘),铰链就在副翼和襟翼的交界处。翼根前缘是一对大边条,一直前伸到座舱两侧,因此可使飞机能在60度的迎角下飞行。机身采用半硬壳结构,主要采用轻合金,增压座舱采用破损安全结构,后机身下部装着舰用的拦阻钩。检查盖采用石墨环氧树脂材料。两台发动机间的隔火板采用钛合金。
尾翼也采用悬臂式结构,平后和垂尾均有后掠角,平尾低于机翼,使飞机大迎角飞行时具有良好的纵向稳定性;略向外倾的双立尾位于全动平尾和机冀之间的机身两侧。全动平尾是铝合金蜂窝结构,石墨/环氧树脂复蒙皮,可用于俯仰控制和滚转控制,作为“尾副翼”增强滚转性能。
为了有效利用边条拉出的涡流,F-18战斗机还使用了双垂尾的设计。双垂尾前移以填补机翼后缘到平尾之间的间隙,大大减小了跨音速阻力。垂尾前移还减少了尾喷管的干涉气流,同时由于不需要在后机身布置垂尾的支撑结构而减轻总重。
进气口布置在边条下方根部,在大迎角下边条将进气理顺了再进入进气道,使F-18战斗机具有了大攻角性能。由于不要求速度达到2马赫,所以就没有使用复杂的可调斜板进气道,而是采用了简单的“D”形进气口,并配有附面层隔离板,两个进气道唯一可动的部件就是边条顶部的放气门。固定式附面层隔板可将呆滞附面层气流沿着坡道流向机腹和边条放气门释放掉。垂尾间的后机背安装有双铰链液压控制的减速板,这样在减速板展开式对飞机的俯仰操纵影响最小。
起落架为前三点式,前起落架上有供弹射起飞用的牵引杆。座舱采用气密、空调座舱,内装马丁-贝克公司的弹射座椅,风挡和座舱盖分别向前、后开启。为了增加在航母甲板滑行时的稳定性,F-18战斗机的主轮距增加到3.11米,粗壮的跪式起落架可以承受着舰时7.32米/秒的下降率。
主起落架向后并旋转90度收入进气道下方的机腹中,双轮前起落架向前收入前机身。在机身结构中大范围采用了先进复合材料。铝合金占了结构重量的50%,合金钢占了16.7%,钛合金占了12.9%。机翼、垂尾和平尾结构中大量使用了钛合金,机翼折叠接头也是钛合金的。机身约40%的表面是石墨/环氧树脂复合材料蒙皮,这种材料占结构总重的9.9%,剩余10.9%的重量是其他各种材料(塑料、橡胶等)。
动力系统
F-18战斗机装两台通用电气公司研制的F404-GE-400低涵比涡轮风扇发动机,单台加力推力71.2千牛(7200公斤)进气道采用固定斜板式,位于翼根下的机身两侧。机内可带4990千克燃油,还可挂三个副油箱,飞机总载油量可达7979千克。机头右侧上方还装有可收藏的空中加油管。
F404是低旁通比涡扇,旁通比0.34,该发动机具有三级钛合金风扇,一排固定式进气导向叶片和一排可变导向叶片,七级压气机,前三级为可变叶片定子,最后是单级高低压涡轮。F404发动机结构简单,活动部件相对较少。该发动机在高迎角状态下有很好的压缩机失速特性,即使偶尔失速也能通过发动机和加力燃烧室再次点火迅速自行恢复。发动机响应迅速,从怠速到全加力状态只需4秒。
座舱设计
F-18战斗机引入了“玻璃”座舱概念,淘汰了许多表盘式仪表,并将原先表盘式仪表的信息显示在阴极射线显示器上。同时安装了抬头显示器(HUD),仪表面板上安装了两个多功能阴极射线显示器和一个水平阴极射线显示器。座舱内安装了手不离杆(HOTAS)油门杆和操纵杆,作战中需要使用到了控制开关都集成在了油门杆和操纵杆上。飞行员在战斗机无需将实现从目标上移开寻找座舱中的开关。座舱内安装了马丁·贝克US10S(SJU-5/6)零-零火箭助推弹射座椅。
航电系统
1977年末,休斯公司的AN/APG-65数字式多模脉冲多普勒雷达在与威斯汀豪斯公司的竞争中获胜,被选为F-18战斗机的雷达。APG-65工作在I/J波段(8-12.5GHz),内置可识别和隔离故障的测试设备(BITE)。雷达和武器投放系统共有20多个机载计算机,与雷达相连的计算机负责将机载传感器产生的数据转换成容易理解的信息显示给飞行员,同时这些计算机对投放武器时所需的弹道、偏差、速度和高度等数据进行快速计算,并在HUD和CRT显示器上向飞行员显示相关信息。
F-18战斗机在对地攻击时,在进气道两侧的“麻雀”挂点上可挂载福特航宇的AN/AAS-38前视红外(FLIR)吊舱和马丁-玛丽埃塔AN/ASQ-173激光光斑跟踪器/攻击摄像机(LST/SCAM)吊舱。FLIR吊舱可增强F-18战斗机的夜间攻击能力,可在座舱的一个CRT上显示实时红外影像。
FLIR与F/A-18的其他航电充分整合,其提供的数据可用于武器投放的计算。LST/SCAM用于恶劣天气的精确轰炸,其跟踪装置可锁定目标上反射的激光束,为任务计算机和座舱显示器提供目标位置的信息。LST/SCAM吊舱的早期型号并没有内置激光发射器,所以F-18战斗机可以根据其他飞机提供目标激光照射来进行激光制导武器的投放。后期的吊舱增加了激光发射器,使F-18战斗机可自主投放激光制导武器。
F-18战斗机安装了Itek公司的AN/ALR-67雷达告警接收装置,可对各种电子威胁进行探测、分析、分类并采取对抗措施。飞行员可在座舱显示器上看到这些威胁的信息和方位,然后采用诸如投放箔条和红外诱饵弹这类的主动对抗措施。“大黄蜂”机背上有两个刀片天线,前一个是柯林斯AN/ARN-118塔康天线,后一个是UHF通讯天线。
雷达有几种不同的模式可供飞行员切换:
空空雷达模式
速度搜索模式:该模式用于在最大距离截获目标,该模式可提供目标的速度和航向信息,但牺牲了精确距离。在该模式下最大工作距离148公里,雷达的控制软件被设计成只注意那些接近F-18的目标。
边测距边扫描模式:最大探测距离74公里,可同时跟踪10个目标,同时在显示器上显示8个目标。计算机在被视为具有最大威胁的目标上显示附加数据,包括航向、高度和速度。
单目标跟踪模式:如果在边测距边扫描模式时有单个目标进入雷达的有效探测范围内时可由飞行员自主选择,计算机在HUD上显示朝向目标的转向指令和武器发射数据,当飞行员确定开火时,该系统还提供射击曲线。
快速评估模式:通过使用多普勒波束锐化技术更密集地检查特定回波来判断目标是单机还是密集编队的多机。
瞄准线模式:一旦飞行员选定一个目标进行攻击时,如果“大黄蜂”处于传统的尾追遭遇模式中,可切换至这一模式。在此模式中雷达发出很窄的3.3度波束扫描飞机前方的一小片空域。
垂直截获模式:当敌机和“大黄蜂”都进入激烈格斗时,可切换至垂直截获模式,在此模式中雷达扫描范围为前方5.3度,瞄准线上方60度,下方14度。飞行员只需将F-18朝敌机滚转,雷达就可自动锁定目标,敌机最理想的位置是正好在风挡隔框前上方,并与HUD垂直对齐。雷达还可工作在HUD截获模式,雷达天线只扫描与HUD视野相对应的一个箱形空域,典型的扫描范围为中线左右各10度,瞄准线上方14度下方6度。
上述雷达的作战模式有效范围从152米至9公里,在任何一种模式中,雷达自动锁定第一个截获到的目标,并在座舱CRT显示器和HUD上显示目标的锁定框。当然飞行员也可越过系统否决被锁定的目标,直到系统截获到他最想要的目标,另外飞行员也可以通过光标来指定目标。
机炮指示模式:这一模式工作在距离小于9公里时,雷达提供目标的位置、距离和速度等信息,计算机在HUD上显示出机炮瞄准点,飞机员将瞄准点套住目标就可以射击了。
空地雷达模式
实时波束地图测绘模式:这一模式可在远距离测绘大面积地形特征,并在座舱显示器上显示前方的雷达缩比地形图。雷达实际获取的是倾斜视角的地形图,但计算机会转换成垂直视角的地形图。
多普勒雷达波束锐化测绘模式:分辨率更高,可用于导航和确定目标位置。一旦识别目标后,雷达就切换至空面测距模式以提供目标的距离信息,固定和移动地面目标跟踪模式使用双通道单脉冲角跟踪提供地面目标的精确参数。“大黄蜂”不具备自动地形跟踪能力,但雷达具有地形回避功能,在飞机前方有障碍物时会发出警告提醒飞行员规避。
海面模式:计算机会自动过滤掉波浪反射的杂波,使系统更易识别、跟踪和攻击敌方水面舰艇。
飞控系统
F-18安装了4余度数字式线传飞控系统,是首个安装这种系统的生产型飞机。飞控计算机根据操纵杆和脚蹬输入的数据来控制各个操纵面的偏转量,不允许飞行员飞出超出限制的动作。线传系统采用投票制运行,如果其中一个通道与其他三个通道输出不同,那么该通道就会被判定为失效,并被自动关闭。
4余度线传系统在即使两个通道都失效时,只要剩余两个通道输出一致,仍可以继续控制飞机,即使所有通道都失效,仍可通过电动备份系统操纵各翼面。该机的平尾甚至还保留了一路机械操纵备份,在最为极端的情况下,飞行员可继续进行俯仰操纵。
此外还安装有两台AYK-14数字式计算机以及利顿公司的惯性导航系统,两台凯撒公司的多功能显示器和费伦第/本迪克斯公司的中心式屏幕显示与乎视显示器等。
火控系统
F-18A大黄蜂战斗机的武器控制系统包括攻击显示分系统、数据处理分系统、参数测量(传感器)分系统和外挂物管理/控制分系统等4个主要部分。
攻击显示分系统:包括AN/AVQ-28平视显示器和3个完全一样的阴极射线管下视显示器-多功能显示器(MFD)、主监控显示器(MasterMonitorDisplay-MMD)和水平情况显示器(HorizontalSituationDisplay-HSD)。主监控显示器显示所有飞机系统的告警信息和咨询信息。它也是多功能显示器的备用设备,能显示前视红外信息。水平情况显示器是主要的导航显示器。
数据处理分系统:包括大小30余个计算机,如AN/AYK-14中央任务计算机(2台并行工作)、雷达信号处理机、雷达数据处理机、外挂物管理计算机、显示计算机、飞行控制计算机和大气数据计算机等,全部程序大约有779K表3.1列出了主要几种可编程和ROM计算机的CPU和存储容量。
参数测量分系统:包括AN/APG-65雷达、AN/ASN-130惯导装置、AN/AAS-38前视红外装置、AN/ASQ-173激光照射/测距器和大气数据传感器等。
外挂物管理和控制分系统:包括AN/AYQ-9外挂物管理系统和AN/AWG-21导弹控制器等。
机载武器
机载机枪:机头1门M6120毫米六管机炮,备弹570发。弹鼓就安装在APG-65雷达单元后方,机炮口就在机鼻雷达上方。机炮射击时的振动并不会损坏娇贵的雷达,夜间射击时,风挡前的机炮口火光也不会伤害飞行员的肉眼。飞行员可选择4,000或6,000发/分的发射速率。两侧边条将机炮口爆炸气团和烟雾分隔至机身上方,阻止其被吸入发动机。
外挂弹药:外部能携带13700磅弹药。共有9个外挂架,两个翼尖挂架各可挂1枚空对空导弹;两个外翼挂架可带空对地或空对空武器,包括空空导弹、鱼叉反舰导弹和、空地导弹和“哈姆”高速反辐射导弹;两个内翼挂架可带副油箱或空对地武器;位于发动机短舱下的两个挂架可带导弹或激光跟踪器、攻击效果照相机和前视红外探测系统吊舱等;位于机身中心线的挂架可挂副油箱或武器。
重要事件
2014年8月22日,“卡尔·文森”号航母战斗群离开圣迭戈,部署到第五舰队。它计划接替目前在波斯湾的“乔治·布什”号航母。
2014年9月12日,美国军方官员表示,美国海军的两架战机12日坠入西太平洋。这两架F/A-18C“大黄蜂”舰载战斗机属于驻加利福尼亚州圣华金河谷的海军勒莫尔航空站第17舰载机联队。该联队派驻“卡尔·文森”号航母。
坠机事件发生在当地时间下午5时40分,地点在韦克岛以西约466公里处。韦克岛位于火奴鲁鲁以西3700公里处。撞机发生在两架战机着舰时。“卡尔·文森”号航母飞行甲板上的工作人员目睹了两架F/A-18C“大黄蜂”舰载战斗机12日早上看到两机相撞,碎片腾空而起。一名飞行员立即弹射出来,大约45分钟后被从水中救起。这名飞行员属于第113战斗攻击机中队。他目前正在疗伤,情况良好。
当时在空中的所有其他飞机都安全返回航母。参与搜寻失踪飞行员的舰船有“邦克山”号导弹巡洋舰、“格里德利”号导弹驱逐舰、“斯特雷特”号导弹驱逐舰、“杜威”号导弹驱逐舰,以及两个直升机中队。
对失踪飞行员的搜寻工作仍在继续,已经向他的亲属通告了这一事故。撞机原因仍在调查之中。两架飞机均完全撞毁。美军称目前还不能公布坠机的细节,但调查已经开始。获救飞行员目前在“卡尔·文森”号航母的医务部,情况良好。



















