简介
对数函数
函数依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如的函数,在其中底数α是固定的而只有一个参数x。所以对每个基的值(不得是负数、0或1)只有唯一的对数函数。从这个角度看,底数α的对数函数是指数函数的反函数。词语“对数”经常用来称呼对数函数自身和这个函数的1个特定值。
对数函数图像和指数函数图像关于直线y=x对称,互为逆函数。
对数函数的性质有:
都过(1,0)点;
定义域为|R|≠0,值域为R;
α>1,在(0,+∞)上是增函数;1>α>0时,在(0,+∞)上是减函数。
零没有对数
在实数范围内,负数无对数。在复数范围内,负数有对数。如:
㏑(-5)=㏑[(-1)*5]=㏑(-1)+㏑5=iπ+㏑5.
而事实上,当θ=(2k+1)π时(k∈Z),e^[(2k+1)πi]+1=0,这样,㏑(-1)的具有周期性的多个值,㏑(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:㏑(-5)=(2k+1)πi+㏑5。
loga1=0,logaa=1
性质推导
定义:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
3、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
4、与(3)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
5、与(3)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]
函数图象
1.对数函数的图象都过(1,0)点.
2.对于y=log(a)(n)函数,
①,当0<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.
②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.
3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.
其他性质
性质一:换底公式
log(a)(N)=log(b)(N)÷log(b)(a)
推导如下:
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
公式二:log(a)(b)=1/log(b)(a)
证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数
log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1
在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。
指数对数不等式
1.解题思路:化超越不等式为代数不等式,依据是指数函数和对数函数的单调性。
2.常见题型及等价转化:
(1)(a>0,a≠1)。当0<1时,f(x)1时,f(x)>g(x)。<1时,
(2)m·(ax)2+n·(ax)+k>0。令ax=t(t>0),转化为mt2+nt+k>0,先求t的取值范围,再确定x的集合。
(3)logaf(x)>logag(x)(a>0,a≠1)。
当0<1时,
当a>1时,
(4)。
令logaf(x)=t(t∈R),转化为mt2+nt+k>0,先求t的取值范围,再确定x的集合。
3.例题
例1.解不等式。
解:,所以x2-2x-3<3-3x,所以x2+x-6<0,所以-3<2。
所以原不等式的解集为(-3,2)。
例2.解不等式。
解:原不等式可化为,设2x=t(t>0),则t2-12t-64≤0。
所以-4≤t≤16,因为t>0。所以0<2x≤16,从而x≤4。
所以原不等式的解集是(-∞,4]。
例3.解不等式
解:原不等式可化为:
所以所以所以1
所以原不等式的解集为(1,5)。
注意:(1)解对数不等式要考虑原不等式中的定义域;(2)如出现,往往将此项移项,这样可以避开分式运算;(3)如出现以2和4为底数的对数,最好统一成4为底的对数,这样可以避开无理式运算。



















