简介
弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
发展简史
弹性力学的发展大体分为四个时期。
发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。
第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.-L·柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。
第三个时期是线性各向同性弹性力学大发展时期。这个时期的主要特点是弹性力学被广泛应用于工程问题,同时在理论方面建立了许多重要的定理和原理,并提出了许多有效的计算方法。这个时期从A·J·C·B·de圣维南于1855~1856年间发表关于柱体的扭转和弯曲的论文后开始,开辟了一条用半物理半数学的方法解弹性力学基本方程的途径。接着G·B·艾里解决了平面应力问题,H·R·赫兹解决了接触问题,G·基尔施解决了孔边应力集中问题,等等。这些成就的取得,使弹性力学得到工程界的重视。在这个时期中,弹性力学的一般理论也有了很大的发展。在弹性力学基本方程建立后不久,建立了弹性力学的虚功原理和最小势能原理。1872年E.贝蒂建立了互换定理。1879年A·卡斯蒂利亚诺建立了余能原理。由于这些能量原理的建立,使基于这些原理的近似计算(如瑞利-里兹法和伽辽金法)也得到了发展。
从20世纪20年代起,弹性力学进入第四个时期,各向异性和非均匀体的弹性力学、非线性弹性力学、热弹性力学等都有了重大发展。另外,还出现了许多边缘分支,如研究固体与气体(或液体)共同作用的气动弹性力学以及粘弹性力学等。这些领域的发展,促进了有关工程技术的发展。
主要内容
弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。
在近代,经典的弹性理论得到了新的发展。例如,把切应力的成对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本构方程。对于弹性体的某一点的本构方程,除考虑该点本身外还要考虑弹性体其他点对该点的影响,发展为非局部弹性力学等。
基本假定
1.假定物体是连续的,就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
2.假定物体是完全弹性的,就是假定物体完全服从胡克定律——应变与引起该应变的那个应力分量成比例。
3.假定物体是均匀的,就是整个物体是由同一材料组成的。
4.假定物体是各向同性的,就是物体内一点的弹性在所有各个方向都相同。
5.假定位移和形变是微小的。
分支学科
静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学
相关学科
静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学、物理学、力学、热学、光学、声学、电磁学、核物理学、固体物理学。
应用
建筑业中,在一些承重的“过梁”上经常用到“弹性力学”,这些过梁一般都受到自上而下的“力”如果把这样的“过梁”作成水平,那么,长时间受到向下的力,“过梁”就会向下弯,久而久之,便形成变形。依据弹性力学的原理,把过梁作成向上弯一定幅度的形状,当受到向下的力时过梁就会把这种重力按过梁弯曲的形状传到垂直的“承重墙”那里,使建筑物合理承受外力。不过在建筑上,你要说弹性,就得要说塑性,两者是双胞胎,缺不了谁的。我们知道弹簧是弹性的,而玻璃是脆性的,胶皮泥是塑性的——因为有变形,还有恢复,在建筑上用的Z多的是弹塑性。因为你不可能都是钢结构嘛,毕竟混合结构(钢筋混凝土)是多数。即:在设计荷载下保持弹性(楼板)或不变形(砖墙、柱子),在过载下(地震)允许塑性变形,但不允许倒塌。弹性力学在建筑上wan美应用就是钢结构。还有相对一点的就是楼板等薄体、薄壳结构,以及大跨度长细比比较大的预应力钢筋混凝土结构。



















