一阶线性微分方程

一阶线性微分方程

数学术语
形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性微分方程。(因为y'是关于y及其各阶导数的1次的,P(x)y是一次项,它们同时又是关于x及其各阶导数的0次项,所以为齐次。)形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。
  • 中文名:一阶线性微分方程
  • 外文名:First order linear differential equation
  • 定义:形如y' P(x)y=Q(x)的微分
  • 分类:当Q(x)≡0时,方程为y' P(x)y=0
  • 解法:求解这类方程一般采用常数变易法

定义

形如(记为式1)的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。这里假设是x的连续函数。

,式1变为(记为式2)称为一阶齐次线性方程。

如果不恒为0,式1称为一阶非齐次线性方程,式2也称为对应于式1的齐次线性方程。

式2是变量分离方程,它的通解为,这里C是任意常数。

解法

一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。

一阶齐次线性微分方程

对于一阶齐次线性微分方程:

其通解形式为:

其中C为常数,由函数的初始条件决定

阶非齐次线性微分方程

对于一阶非齐次线性微分方程:

其对应齐次方程:

解为:

令C=u(x),得:

带入原方程得:

对u'(x)积分得u(x)并带入得其通解形式为:

其中C为常数,由函数的初始条件决定。

注意到,上式右端第一项是对应的齐次线性方程式(式2)的通解,第二项是非齐次线性方程式(式1)的一个特解。由此可知,一阶非齐次线性方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和。

相关词条

相关搜索

其它词条