恒流源

恒流源

寬頻譜,高精度交流穩流電源
恒流源、交流恒流源、直流恒流源、電流發生器、大電流發生器又叫電流源、穩流源,是一種寬頻譜,高精度交流穩流電源,具有響應速度快,恒流精度高、能長期穩定工作,适合各種性質負載(阻性、感性、容性)等優點。主要用于檢測熱繼電器、塑殼斷路器、小型短路器及需要設定額定電流、動作電流、短路保護電流等生産場合。[1]
  • 中文名:恒流源
  • 外文名:Constant current source
  • 适用領域:
  • 所屬學科:
  • 學科:物理
  • 又稱:電流源

簡介

恒流源、交流恒流源、直流恒流源、電流發生器、大電流發生器又叫電流源、穩流源,是一種寬頻譜、高精度交流穩流電源,具有響應速度快、恒流精度高、能長期穩定工作,适合各種性質負載(阻性、感性、容性)等優點。  

結構

恒流源是電路中廣泛使用的一個組件,這裡是比較常見的恒流源的結構和特點。 恒流源分為流出(Current Source)和流入(Current Sink)兩種形式。

最簡單的恒流源

最簡單的恒流源就是用一隻恒流二極管。實際上,恒流二極管的應用是比較少的,除了因為恒流二極管的恒流特性并不是非常好之外,電流規格比較少,價格比較貴也是重要原因。

最常用的簡易恒流源

用兩隻同型三極管,利用三極管相對穩定的be電壓作為基準,電流數值為:I = Vbe/R1。

這種恒流源優點是簡單易行,而且電流的數值可以自由控制,也沒有使用特殊的元件,有利于降低産品的成本。缺點是不同型号的管子,其be電壓不是一個固定值,即使是相同型号,也有一定的個體差異。同時不同的工作電流下,這個電壓也會有一定的波動。因此不适合精密的恒流需求。

為了能夠精确輸出電流,通常使用一個運放作為反饋,同時使用場效應管避免三極管的be電流導緻的誤差。如果電流不需要特别精确,其中的場效應管也可以用三極管代替。  

計算公式

編輯 播報

恒流源有個定式,就是利用一個電壓基準,在電阻上形成固定電流。有了這個定式,恒流源的搭建就可以擴展到所有可以提供這個“電壓基準”的器件上。

最簡單的電壓基準

最簡單的電壓基準,就是穩壓二極管,利用穩壓二極管和一隻三極管,可以搭建一個更簡易的恒流源。

電流計算公式為:I = (Vd-Vbe)/R1。

TL431

TL431是另外一個常用的電壓基準,利用TL431搭建的恒流源,其中的三極管替換為場效應管可以得到更好的精度。

TL431的其他信息請參考《TL431的内部結構圖》和《TL431的幾種基本用法》

電流計算公式為:I = 2.5/R1。

三端穩壓

事實上,所有的三端穩壓,都是很不錯的電壓源,而且三端穩壓的精度已經很高,需要的維持電流也很小。利用三端穩壓構成恒流源,也有非常好的性價比。

這種結構的恒流源,不适合太小的電流,因為這個時候,三端穩壓自身的維持電流會導緻較大的誤差。

電流計算公式為:I = V/R1,其中V是三端穩壓的穩壓數值。

實際的電路中,有一些特殊的結構,也可以提供很好的恒流特性,最典型的就是一個很高的電壓通過一個電阻在一個低壓設備上形成電流,這個恒流源的精度,取決于高壓的精确度和低壓設備本身導緻的電壓波動。在一些開關電源電路中,這個結構用來給三極管提供偏置電流。

電流計算公式為: I = Vin/R1。

值得一提的是,以上這些恒流源并不都适合安培以上級别的恒流應用,因為電阻上面太大的電流會導緻發熱嚴重。

可以通過使用更小的電阻來降低這個熱量,不過在單電源供電模式下,多數運放都不能有效檢測和輸出接近地或者Vcc的電壓,因此必須使用特殊的器件才能達到要求。有個簡單的辦法是通過一個穩壓器件(穩壓管,或者TL431等)偏置電阻上面的電壓,使得這個電壓進入運放的檢測範圍。

恒流源的實質

恒流源的實質是利用器件對電流進行反饋,動态調節設備的供電狀态,從而使得電流趨于恒定。隻要能夠得到電流,就可以有效形成反饋,從而建立恒流源。

能夠進行電流反饋的器件,還有電流互感器,或者利用霍爾元件對電流回路上某些器件的磁場進行反饋,也可以利用回路上的發光器件(例如光電耦合器,發光管等)進行反饋。這些方式都能夠構成有效的恒流源,而且更适合大電流等特殊場合,不過因為這些實現形式的電路都比較複雜,這裡就不一一介紹了。  

電路

基本概念

恒流源是輸出電流保持恒定的電流源,而理想的恒流源應該具有以下特點:

a)不因負載(輸出電壓)變化而改變;

b)不因環境溫度變化而改變;

c)内阻為無限大(以使其電流可以全部流出到外面)。

能夠提供恒定電流的電路即為恒流源電路,又稱為電流反射鏡電路。

基本原理

基本的恒流源電路主要是由輸入級和輸出級構成,輸入級提供參考電流,輸出級輸出需要的恒定電流。

①構成恒流源電路的基本原則:

恒流源電路就是要能夠提供一個穩定的電流以保證其它電路穩定工作的基礎。即要求恒流源電路輸出恒定電流,因此作為輸出級的器件應該是具有飽和輸出電流的伏安特性。這可以采用工作于輸出電流飽和狀态的BJT 或者MOSFET來實現。

為了保證輸出晶體管的電流穩定,就必須要滿足兩個條件:a)其輸入電壓要穩定——輸入級需要是恒壓源;b)輸出晶體管的輸出電阻盡量大(最好是無窮大)——輸出級需要是恒流源。

②對于輸入級器件的要求:

因為輸入級需要是恒壓源,所以可以采用具有電壓飽和伏安特性的器件來作為輸入級。一般的pn結二極管就具有這種特性——指數式上升的伏安特性;另外,把增強型MOSFET的源-漏極短接所構成的二極管,也具有類似的伏安特性——抛物線式上升的伏安特性。

在IC中采用二極管作為輸入級器件時,一般都是利用三極管進行适當連接而成的集成二極管,因為這種二極管既能夠适應IC工藝,又具有其特殊的優點。對于這些三極管,要求它具有一定的放大性能,這才能使得其對應的二極管具有較好的恒壓性能。

③對于輸出級器件的要求:

如果采用BJT,為了使其輸出電阻增大,就需要設法減小Evarly效應(基區寬度調制效應),即要盡量提高Early電壓。

如果采用MOSFET,為了使其輸出電阻增大,就需要設法減小其溝道長度調制效應和襯偏效應。因此,這裡一般是選用長溝道MOSFET ,而不用短溝道器件。  

電路示例

圖1左圖是用增強型n-MOSFET構成的一種基本恒流源電路。為了保證輸出晶體管T2的栅-源電壓穩定,其前面就應當設置一個恒壓源。實際上,T1二極管在此的作用也就是為了給T2提供一個穩定的栅-源電壓,即起着一個恒壓源的作用。因此T1應該具有很小的交流電導和較高的跨導,以保證其具有較好的恒壓性能。T2應該具有很大的輸出交流電阻,為此就需要采用長溝道MOSFET,并且要減小溝道長度調制效應等不良影響。

圖1右圖是用BJT構成的一種基本恒流源電路。其中T2是輸出恒定電流的晶體管,晶體管T1就是一個給T2提供穩定基極電壓的發射結二極管。當然,T1的電流放大系數越大、跨導越高,則其恒壓性能也就越好。同時,為了輸出電流恒定(即提高輸出交流電阻),自然還需要盡量減小T2的基區寬度調變效應(即Early效應)。另外,如果采用兩個基極相連接的p-n-p晶體管來構成恒流源的話,那麼在IC芯片中這兩個晶體管可以放置在同一個隔離區内,這将有利于減小芯片面積,但是為了獲得較好的輸出電流恒定的性能,即需要特别注意增大橫向p-n-p晶體管的電流放大系數。  

電路擴展

在以上基本電路的基礎上,還可以加以擴展其功能:

一方面,在二極管恒壓源(T1)的作用下,它的後面可以連接多個輸出支路(與T2并聯的多個晶體管),從而能夠獲得多個穩定的輸出電流。

另一方面,在T1和T2的源極(發射極)上還可以分别串聯一個電阻(設分别為R1和R2),這就能夠得到不同大小的恒定輸出電流。因為這時可有I(輸出)/I(參考)=R1/R2,則在這種恒流源電路中,輸出的恒定電流基本上是決定于電阻以及晶體管放大系數的比值,而與電阻和放大系數的絕對大小關系不大。這種性質正好适應了集成電路制造工藝的特點,所以這種恒流源電路是模拟IC中的一種基本電路。  

相關研究

組成

恒流源電路如圖2所示。圖2中A是高精度運放,Q1、Q2是功率MOSFET,負載為感性。由NE555P構成脈位調制器,工作于無穩态方式,其振蕩頻率受⑤腳輸入的信号調制。控制端⑤腳加入調制信号VΩ(該端允許外加0~EC的電壓),使定時器的阈值電平Vth1和觸發電平Vth2均随VΩ而變。

定時器電容C2的充電時間和放電時間均受調制信号VΩ的控制;③腳輸出正脈沖的位置及脈沖寬度将随調制信号VΩ的變化而變化,實現脈沖的位置及寬度的雙重調制。  

工作原理

控制電壓Vi經R1、R2分壓後加到運放A的輸入端,運放的輸出信号作為NE555P的調制信号。

NE555P③腳輸出的PWM信号控制Q1,驅動Q1、Q2交替工作在開關狀态;Q1的工作頻率和占空比等于NE555P③腳輸出電壓信号的頻率和占空比。Q2導通時,D處于截止狀态,直流電壓EC加在D的兩端,經LC濾波後對負載供電;Q2截止時,輸入電壓為0,D在回路電感的作用下導通,構成續流回路,D還可以削弱輸出信号電壓從高電平跳變到低電平時在感性負載兩端産生的反電動勢。RS為取樣電阻。所以,控制電壓經運放後,控制脈位調制器輸出脈沖信号的占空比,改變Q1、Q2的開關時間,從而控制輸出電流的大小。  

試驗結果

MOSFET的參數

為了測試恒流源的性能,筆者對其進行了實驗研究。電源選用直流12V2A的高精度穩壓電源,在元件選擇上,A選用高精度運放,電阻選用千分之一精度的精密電阻器,取樣電阻選用溫度穩定性好的無感線繞電阻,實驗采用的負載為感性,其電感量為180mH、靜态電阻為4Ω,MOSFET的參數見MOSFET的參數。

輸出電流與輸入電壓的關系

當RS=1Ω,R1=24k,R2=16k,輸入電壓Vi從0~5V變化時,理論計算和實際測量的輸出電流I0随輸入電壓Vi的變化關系如圖2(吻合),輸出電流與輸入電壓成線性關系。

取樣電阻與輸出電流的關系

當R1=24k,R2=16k,輸入電壓Vi為5V時,測得取樣電阻與輸出電流的關系如圖4。取樣電阻越小,輸出電流越大,電阻的功耗也相應增大;反之亦然。與理論計算基本相吻合。

其他性能的測量

測得恒流源輸出電流與PWM信号占空比成線性關系,占空比越大,輸出電流越大;紋波電流<3mA;負載調整率<1%。  

結論

選擇适當元件參數,當控制電壓從0~5V變化時,該恒流源電路的輸出電流I0将在0~+2A範圍内連續變化;電源的效率高,線性度好,具有結構簡單、安全(輸出電壓<12V)、穩定的優點。此恒流源可作為磁流變阻尼器的驅動電源,也可應用于其他領域。  

上一篇:廢後

下一篇:光電子學

相關詞條

相關搜索

其它詞條