優點
●縮短開發周期。模塊電源一般備有多種輸入、輸出選擇。用戶也可以重複叠加或交叉叠加,構成積木式組合電源,實現多路輸入、輸出,大大削減了樣機開發時間。●設計簡單。隻需一個電源模塊,配上少量分立元件,即可獲得電源。
●變更靈活。産品設計如需更改,隻需轉換或并聯另一合适電源模塊即可。
●技術要求低。模塊電源一般配備标準化前端、高集成電源模塊和其他元件,因此令電源設計更簡單。
●模塊電源外殼有集熱沉、散熱器和外殼三位一體的結構形式,實現了模塊電源的傳導冷卻方式,使電源的溫度值趨近于最小值。同時,又賦予了模塊電源金玉其表的包裝。
●質優可靠。模塊電源一般均采用全自動化生産,并配以高科技生産技術,因此品質穩定、可靠。
●用途廣泛:模塊電源可廣泛應用于航空航天、機車艦船、軍工兵器、發電配電、郵電通信、冶金礦山、自動控制、家用電器、儀器儀表和科研實驗等社會生産和生活的各個領域,尤其是在高可靠和高技術領域發揮着不可替代的重要作用。
結構
對有TRIM或ADJ(可調節)輸出引腳的模塊電源産品,可通過電阻或電位器對輸出電壓進行一定範圍内的調節,一般調節範圍為±10%。1、輸出電壓的調節
對TRIM輸出引腳,将電位器的中心與TRIM相連,在所有+S、-S管腳的模塊中,其他兩端分别接+S、-S。沒有+S、-S時,将兩端分别接到相應主路的輸出正負極(+S接+Vin,-S接-Vin),然後調節電位器即可。電位器的阻值一般選用5~10kΩ比較合适。
對ADJ輸出引腳,分為輸入邊調節與輸出邊節。輸出邊調節與TRIM引腳的調節方式一樣。輸入邊調節隻能上調輸出電壓,此時将電位器的其中一端與中心相接,另一端接輸入端的地。
2、輸入保護電路
一般模塊電源産品都有内置濾波器,能滿足一般電源應用的要求。如果需要更高要求的電源系統,應增加輸入濾波網絡。可以采用LC或π型網絡,但應注意盡量選擇較小的電感和較大的電容。
為了防止輸入電源瞬态高壓損壞模塊電源,建議用戶在輸入端接瞬态吸收二極管并配合保險絲使用,以确保模塊在安全的輸入電壓範圍之内。為了降低共模噪聲,可以增加Y(Cy)電容,一般選擇幾nf高頻電容。R為保險絲,D1為保護二極管,D2為瞬态吸收二極管(P6KE系列)。
3、遙控開/關電路
模塊電源的遙控開關操作,是通過REM端進行的。一般控制方式有兩種:
(1)REM與-VIN(參考地)相連,遙控關斷,要求VREF<0.4V。REM懸空或與+VIN相連,模塊工作,要求VREM>1V。
(2)REM與VIN相連,遙控關斷,要求VREM<0.4V。REM與+VIN相連,模塊工作,要求VREM>1V。REM懸空,遙控關斷,即所謂“懸空關斷”(-R)。
如果控制要與輸入端隔離,則可以使用光電耦合器作為傳遞控制信号。
4、模塊的組合
(1)并聯擴容。将相同模塊輸出端并聯,可使輸出能力增強,但并聯模塊的輸出電壓要調整得比較一緻,以保證相對均流,同時避免不必要的振蕩。對有較大電流輸出的模塊,還可以仔細設計引線電阻,以達到均流效果。用這種方法并聯的模塊,不宜超過2個。同時,如果其中一塊模塊輸出有故障,整個系統都将不能正常工作。并聯擴容連接電路RL為負載。
(2)冗餘熱備份并聯。将相同的模塊輸出端通過二極管後并聯可使輸出能力增強,以提高電源系統的可靠性。原則上如果配合相應輸出報警電路,将模塊放在可以拆卸的母線上,這樣,出現故障的模塊可以及時更換。用這種方法并聯的模塊,沒有量限制。D一般為肖特基二極管。
(3)串聯擴容。将相同模塊輸出端串聯,可使輸出電壓倍增,功率也相應增加,而串聯輸出端須接二極管以進行保護。
5、鈴流的備份使用
鈴流發生器主要用于電話局交換機給電話用戶提供振鈴,一般是在偏置狀态下使用。偏置可分為正偏置和負偏置。為了提高鈴流系統的可靠性,需要對鈴流進行備份。
應用領域
模塊電源應用在幾大方面
1.電力,主要有集成器和電表以及智能電表
2.工控,工業控制領域
3.醫療,醫療設備,主要有護胎儀,監護儀等等
4.軍工,軍工業是應用很廣泛的一個方面。軍用設備裡。
注意事項
大功率模塊開關電源的損耗主要有高頻開關損耗、高頻變壓器損耗、整流損耗和線路傳導損耗4部分。而在低電壓大電流輸出的應用場合,整流損耗和線路傳導損耗占有較大的比重,輸出電壓越低,輸出電流越大,則整流損耗和線路傳導損耗占模塊開關電源總損耗的比重越大。
二極管損耗:
在傳統的整流中采用二極管整流,而在低電壓輸出條件下一般采用肖特基二極管整流,肖特基二極管和其他整流二極管相比具有開關速度快,正向電壓降低的優點,但是肖特基二極管的正向電壓降和整流輸出電流的大小有關,整流輸出電流越大則正向電壓降越大,有可能高達0.5~0.6V或更大,并且肖特基二極管的反向漏電流較大。
而同步整流技術利用導通電阻小,低耐電壓的場效應管(MOSFET)來代替普通整流二極管。由于同步整流MOSFET具有導通電阻低(一般隻有幾mΩ)、阻斷時漏電流小、開關工作頻率高的特點,可以極大的減小電源整流部分的功耗,使電源系統的工作效率明顯得到提高,但是在具體應用中同步整流的實現要比二極管整流要複雜些。在開關電源的低電壓大電流輸出應用場合,同步整流技術有着很好的應用前景。
磁性元器件的損耗:
變壓器損耗也是模塊開關電源損耗的重要部分,變壓器損耗主要有鐵損和銅損。鐵損是指由由變壓器的材料、形狀、工藝結構等有關因素而引起的高頻損耗,銅損是指由變壓器繞組線路而引起的傳導損耗,為了減小變壓器的鐵損,應選擇高頻特性好、高頻損耗小、磁芯結構形狀合理、結構緊湊的磁芯材料。
同時為了減小模塊開關電源的體積,應盡力提高模塊開關電源的開關工作頻率,如要提高到500kHz左右或更高,普通磁芯材料的損耗很大,磁芯很容易過熱而磁飽和,以至無法正常工作,所以在模塊開關電源中必須選用磁特性優良的高頻磁芯材料。
磁性元器件的尺寸大小和開關工作頻率有密切關系,在磁性元器件允許的工作頻率範圍内,磁性元器件的尺寸和開關工作頻率成反比,要想減小模塊開關電源高頻開關變壓器和電感等磁性元器件的體積,需提高開關工作頻率。
同時,模塊開關電源中高頻開關變壓器繞組的設計也很重要,高頻開關變壓器的繞組不僅對銅損有影響,而且關系到高頻開關變壓器繞組間的耦合,對高頻開關變壓器的鐵損也有影響,高頻開關變壓器的設計和制作對模塊開關電源的工作性能有很大的影響
。
産品分類
按現代電力電子的應用領域,我們把模塊電源劃分如下:
綠色模塊電源
高速發展的計算機技術帶領人類進入了信息社會,同時也促進了模塊電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接着開關電源技術相繼進人了電子、電器設備領域。計算機技術的發展,提出綠色電腦和綠色模塊電源。綠色電腦泛指對環境無害的個人電腦和相關産品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的外圍設備,在睡眠狀态下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。
高頻開關
通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常将整流器稱為一次電源,而将直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是将單相或三相交流電網變換成标稱值為48V的直流電源。在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz範圍内,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離模塊電源,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在标準控制闆上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也将不斷增加。
(DC/DC)變換器
DC/DC變換器将一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。随着大規模集成電路的發展,要求模塊電源實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,已有一些公司研制生産了采用零電流開關和零電壓開關技術的二次模塊電源,功率密度有較大幅度的提高。
不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。
現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lVA、2kVA、3kVA等多種規格的産品。
變頻器模塊電源
變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然後由大功率晶體管或IGBT組成的PWM高頻變換器,将直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。
國際上400kVA以下的變頻器電源系列産品已經問世。八十年代初期,日本東芝公司最先将交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒适、節能等優點。國内于90年代初期開始研究變頻空調,96年引進生産線生産變頻空調器,逐漸形成變頻空調開發生産熱點。預計到2000年左右将形成高潮。變頻空調除了變頻電源外,還要求有适合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。
逆變式模塊電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有着廣闊的應用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分将直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波後成為穩定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀态的目的,進而提前對系統做出調整和處理,解決了大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節範圍5~300A,重量29kg。
高壓直流模塊電源
大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術,将市電整流後逆變為3kHz左右的中頻,然後升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,将電源的開關頻率提高到20kHz以上。并将幹式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。
國内對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路将直流電壓逆變為高頻電壓,然後由高頻變壓器升壓,最後整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
電力有源濾波器
傳統的交流-直流(AC-DC)變換器在投運時,将向電網注入大量的諧波電流,引起諧波損耗和幹擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。
電力有源濾波器是一種能夠動态抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區别是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信号為電壓環誤差信号與全波整流電壓取樣信号之乘積。
分布式供電系統
分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生産效率。
八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中後期,随着高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代後期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。
分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。



















