氣缸

氣缸

發動機的主要構件
引導活塞在缸内進行直線往複運動的圓筒形金屬機件。空氣在發動機氣缸中通過膨脹将熱能轉化為機械能;氣體在壓縮機氣缸中接受活塞壓縮而提高壓力。渦輪機、旋轉活塞式發動機等的殼體通常也稱“氣缸”。氣缸的應用領域:印刷(張力控制)、半導體(點焊機、芯片研磨)、自動化控制、機器人等等。
    中文名:氣缸 外文名:cylinder 用途: 能耗類型:壓縮空氣 材 質:鋁,碳鋼 科 目:交通工程 分類:單作用氣缸等

基本概念

内燃機缸體上安放活塞的空腔。是活塞運動的軌道,燃氣在其中燃燒及膨脹,通過氣缸壁還能散去一部分燃氣傳給的爆發餘熱,使發動機保持正常的工作溫度。氣缸的型式有整體式和單鑄式。單鑄式又分為幹式和濕式兩種。氣缸和缸體鑄成一個整體時稱整體式氣缸;氣缸和缸體分别鑄造時,單鑄的氣缸筒稱為氣缸套。氣缸套與冷卻水直接接觸的稱作濕式氣缸套;不與冷卻水直接接觸的稱作幹式氣缸套。為了保持氣缸與活塞接觸的嚴密性,減少活塞在其中運動的摩擦損失,氣缸内壁應有較高的加工精度和精确的形狀尺寸。

種類

氣壓傳動中将壓縮氣體的壓力能轉換為機械能的氣動執行元件。氣缸有做往複直線運動的和做往複擺動兩種類型,如圖《氣缸》所示。做往複直線運動的氣缸又可分為單作用氣缸、雙作用氣缸、膜片式氣缸和沖擊氣缸4種。

①單作用氣缸:僅一端有活塞杆,從活塞一側供氣聚能産生氣壓,氣壓推動活塞産生推力伸出,靠彈簧或自重返回。

②雙作用氣缸:從活塞兩側交替供氣,在一個或兩個方向輸出力。

③膜片式氣缸:用膜片代替活塞,隻在一個方向輸出力,用彈簧複位。它的密封性能好,但行程短。

④沖擊氣缸:這是一種新型元件。它把壓縮氣體的壓力能轉換為活塞高速(10~20米/秒)運動的動能,借以做功。

⑤無杆氣缸:沒有活塞杆的氣缸的總稱。有磁性氣缸,纜索氣缸兩大類。

做往複擺動的氣缸稱擺動氣缸,由葉片将内腔分隔為二,向兩腔交替供氣,輸出軸做擺動運動,擺動角小于 280°。此外,還有回轉氣缸、氣液阻尼缸和步進氣缸等。

結構

氣缸是由缸筒、端蓋、活塞、活塞杆和密封件等組成,其内部結構如圖《SMC氣缸原理圖》所示:

1)缸筒

缸筒的内徑大小代表了氣缸輸出力的大小。活塞要在缸筒内做平穩的往複滑動,缸筒内表面的表面粗糙度應達到Ra0.8μm。

SMC、 CM2氣缸活塞上采用組合密封圈實現雙向密封,活塞與活塞杆用壓鉚鍊接,不用螺母。

2)端蓋

端蓋上設有進排氣通口,有的還在端蓋内設有緩沖機構。杆側端蓋上設有密封圈和防塵圈,以防止從活塞杆處向外漏氣和防止外部灰塵混入缸内。杆側端蓋上設有導向套,以提高氣缸的導向精度,承受活塞杆上少量的橫向負載,減小活塞杆伸出時的下彎量,延長氣缸使用壽命。導向套通常使用燒結含油合金、前傾銅鑄件。端蓋過去常用可鍛鑄鐵,為減輕重量并防鏽,常使用鋁合金壓鑄,微型缸有使用黃銅材料的。

3)活塞

活塞是氣缸中的受壓力零件。為防止活塞左右兩腔相互竄氣,設有活塞密封圈。活塞上的耐磨環可提高氣缸的導向性,減少活塞密封圈的磨耗,減少摩擦阻力。耐磨環長使用聚氨酯、聚四氟乙烯、夾布合成樹脂等材料。活塞的寬度由密封圈尺寸和必要的滑動部分長度來決定。滑動部分太短,易引起早期磨損和卡死。活塞的材質常用鋁合金和鑄鐵,小型缸的活塞有黃銅制成的。如圖2所示

4)活塞杆

活塞杆是氣缸中最重要的受力零件。通常使用高碳鋼、表面經鍍硬鉻處理、或使用不鏽鋼、以防腐蝕,并提高密封圈的耐磨性。

5)密封圈

回轉或往複運動處的部件密封稱為動密封,靜止件部分的密封稱為靜密封。

缸筒與端蓋的連接方法主要有以下幾種:

整體型、鉚接型、螺紋聯接型、法蘭型、拉杆型。

6)氣缸工作時要靠壓縮空氣中的油霧對活塞進行潤滑。也有小部分免潤滑氣缸。  

發展曆程

氣缸原理源于大炮。

1680年,荷蘭科學家霍因斯受到大炮原理的啟發,心想如将炮彈的強大力量用來推動其它機械不是挺好嗎?他一開始仍用火藥作燃燒爆炸物,将炮彈改成“活塞”,把炮筒作“氣缸”,并開一個單向閥。他在氣缸内注入火藥,當點燃火藥後,火藥猛烈地爆炸燃燒,推動活塞向上運動,并産生動力。同時,爆炸氣巨大的壓力還推開單向閥,排出廢氣。而後,氣缸内殘餘廢氣逐漸變冷,氣壓變低,氣缸外部的大氣壓又推動活塞向下運動,以準備進行下一次爆炸。當然,由于行程過長,效率太低,他最終沒有取得成功。但是,正是霍因斯首先提出了“内燃機”的設想,後人在此基礎上才發明了汽車用的發動機。

早期汽車使用單缸機

汽車鼻祖卡爾·奔馳和戴姆勒在當年設計制造汽車時,他們不約而同地隻用了一個氣缸的發動機。就像我們認為一輛汽車不可能使用兩台或更多台發動機一樣,估計當時的人們也不會想象出還會用兩個氣缸或更多氣缸的發動機。然而現在不同了,先别說發達國家,看看國内汽車廣告就會發現,不少廠家總拿發動機的氣缸數目和排列形式來說事,賣微型車的極力吹鼓他的車用的是四缸機而非三缸,用v6發動機的一定要把v字弄得醒目惹眼,廣告宣傳确實起到了很大效果,不少車迷已認同了 “4缸比3缸好”、“6缸比4缸好”、“v型比直列好”、“v型發動機是高級發動機”等概念。國産車中已有近20種車裝配了v6或v8型發動機。

單缸發動機的曲軸每轉兩周才能産生一次燃燒做功,這樣它的聲音聽起來也不連續順暢,聽一聽小排量摩托車的聲音就知道了。最為不能讓人接受的是它的運轉極不平穩,轉速波動較大,而且單缸發動機的外形也不适合裝在汽車上。為此,汽車上已見不到單缸發動機上,兩缸機也不好找了,最少是3缸發動機。國内生産的華利面包車、老款夏利車、吉利豪情和奧拓、福萊爾上,裝的都是3缸機。

1升以下的微型車上多用3缸機,1升至2升的發動機一般采用4缸或5缸機。2升以上的發動機大多為6缸,4升以上的發動機使用8缸的占絕大多數。

在相同排量的情況下,增加氣缸數可以提高發動機的轉速,從而可以提高發動機的輸出功率。另外,增加氣缸數可以使發動機運轉更平穩,使其輸出扭矩和輸出功率更加穩定。增加氣缸數可以使氣車更容易起動,加速響應性更好。為了提高氣車的性能,必須增加氣缸數。因此,豪華轎車、跑車、賽車等高性能氣車的氣缸數都在6缸以上,最多者已達到16缸。

但是,氣缸數的增加不能無限制。因為随着氣缸數的增加,發動機的零部件數也成比例地增加,從而使發動機結構複雜,降低發動機的可靠性,增加發動機重量,提高制造成本和使用費用,增加燃料消耗,并使發動機的體積變大。因此,氣車發動機的氣缸數都是根據發動機的用途和性能要求,在權衡各種利弊之後做出的合适選擇。

直列發動機(line engine),它的所有氣缸均肩并肩排成一個平面,它的缸體和曲軸結構簡單,而且使用一個氣缸蓋,制造成本較低,穩定性高,低速扭矩特性好,燃料消耗少,尺寸緊湊,應用比較廣泛。其缺點是功率較低。“直列”可用l代表,後面加上氣缸數就是發動機代号,現代汽車上主要有l3、l4、l5、l6型發動機。

常見故障

問題

汽缸是鑄造而成的,汽缸出廠後都要經過時效處理,使汽缸在住鑄造過程中所産生的内應力完全消除。如果時效時間短,那麼加工好的汽缸在以後的運行中還會變形。

汽缸在運行時受力的情況很複雜,除了受汽缸内外氣體的壓力差和裝在其中的各零部件的重量等靜載荷外,還要承受蒸汽流出靜葉時對靜止部分的反作用力,以及各種連接管道冷熱狀态下對汽缸的作用力,在這些力的相互作用下,汽缸易發生塑性變形造成洩漏。

汽缸的負荷增減過快,特别是快速的啟動、停機和工況變化時溫度變化大、暖缸的方式不正确、停機檢修時打開保溫層過早等,在汽缸中和法蘭上産生很大的熱應力和熱變形。

汽缸在機械加工的過程中或經過補焊後産生了應力,但沒有對汽缸進行回火處理加以消除,緻使汽缸存在較大的殘餘應力,在運行中産生永久的變形。

在安裝或檢修的過程中,由于檢修工藝和檢修技術的原因,使内缸、汽缸隔闆、隔闆套及汽封套的膨脹間隙不合适,或是挂耳壓闆的膨脹間隙不合适,運行後産生巨大的膨脹力使汽缸變形。

使用的汽缸密封劑質量不好、雜質過多或是型号不對;汽缸密封劑内若有堅硬的雜質顆粒就會使密封面難以緊密的結合。

汽缸螺栓的緊力不足或是螺栓的材質不合格。汽缸結合面的嚴密性主要靠螺栓的緊力來實現的。機組的起停或是增減負荷時産生的熱應力和高溫會造成螺栓的應力松弛,如果應力不足,螺栓的預緊力就會逐漸減小。如果汽缸的螺栓材質不好,螺栓在長時間的運行當中,在熱應力和汽缸膨脹力的作用下被拉長,發生塑性變形或斷裂,緊力就會不足,使汽缸發生洩漏的現象。

汽缸螺栓緊固的順序不正确。一般的汽缸螺栓在緊固時是從中間向兩邊同時緊固,也就是從垂弧最大處或是受力變形最大的地方緊固,這樣就會把變形最大的處的間隙向汽缸前後的自由端轉移,最後間隙漸漸消失。如果是從兩邊向中間緊,間隙就會集中于中部,汽缸結合面形成弓型間隙,引起蒸汽洩漏。  

原因

氣缸出現内、外洩漏,一般是因活塞杆安裝偏心,潤滑油供應不足,密封圈和密封環磨損或損壞,氣缸内有雜質及活塞杆有傷痕等造成的。所以,當氣缸出現内、外洩漏時,應重新調整活塞杆的中心,以保證活塞杆與缸筒的同軸度;須經常檢查油霧器工作是否可靠,以保證執行元件潤滑良好;當密封圈和密封環出現磨損或損環時,須及時更換;若氣缸内存在雜質,應及時清除;活塞杆上有傷痕時,應換新。

氣缸的輸出力不足和動作不平穩,一般是因活塞或活塞杆被卡住、潤滑不良、供氣量不足,或缸内有冷凝水和雜質等原因造成的。對此,應調整活塞杆的中心;檢查油霧器的工作是否可靠;供氣管路是否被堵塞。當氣缸内存有冷凝水和雜質時,應及時清除。

氣缸的緩沖效果不良,一般是因緩沖密封圈磨損或調節螺釘損壞所緻。此時,應更換密封圈和調節螺釘。

氣缸的活塞杆和缸蓋損壞,一般是因活塞杆安裝偏心或緩沖機構不起作用而造成的。對此,應調整活塞杆的中心位置;更換緩沖密封圈或調節螺釘。

解決方案

1.汽缸變形較大或漏汽嚴重的結合面,采用研刮結合面的方法

如果上缸結合面變形在0.05mm範圍内,以上缸結合面為基準面,在下缸結合面塗紅丹或是壓印藍紙,根據痕迹研刮下缸。如果上缸的結合面變形量大,在上缸塗紅丹,用大平尺研出痕迹,把上缸研平。或是采取機械加工的方法把上缸結合面找平,再以上缸為基準研刮下缸結合面。汽缸結合面的研刮一般有兩種方法:

⑴是不緊結合面的螺栓,用千斤頂微微推動上缸前後移動,根據下缸結合面紅丹的着色情況來研刮。這種方法适合結構剛性強的高壓缸。

⑵是緊結合面的螺栓,根據塞尺的檢查結合面的嚴密性,測出數值及壓出的痕迹,修刮結合面,這種方法可以排除汽缸垂弧對間隙的影響。

2.采用适當的汽缸密封材料

因汽輪機汽缸密封劑還沒有統一的國家标準和行業标準,制作原料和配方也各不相同,産品質量參差不齊;在選擇汽輪機汽缸密封劑時,就要選在行業内有口碑,産品質量有保證的正規生産廠家,以保證檢修處理後汽缸的嚴密性。

3.局部補焊的方法

由于汽缸結合面被蒸汽沖刷或腐蝕出溝痕,選用适當的焊條把溝痕添平,用平闆或平尺研出痕迹,研刮焊道和結合面在同一平面内。汽缸結合面變形較大或是漏汽嚴重時,在下缸的結合面補焊一條或兩條10—20mm寬的密消除間隙封帶,然後用平尺或是扣上缸測量,并塗紅丹研刮,直到消除間隙。此操作的工藝也很簡單,焊前預熱汽缸至150℃,然後在室溫下進行分段退焊或跳焊。選用奧氏體焊條,如A407、A412,焊後用石棉布覆蓋保溫緩冷。待冷卻室溫後進行打磨修刮。

4.汽缸結合面的塗鍍或噴塗

當汽缸結合面大面積漏汽,間隙在0.50mm左右時,為了減少研刮的工作量,可用塗鍍的工藝。用汽缸做陽極,塗具做陰極,在汽缸的結合面上反複塗刷電解溶液,塗層的厚度要根據汽缸結合面間隙的大小而定,塗層的種類要根據汽缸的材料和修刮的工藝而定。噴塗就是用專用的高溫火焰噴槍把金屬粉末加熱至熔化或達到塑性狀态後噴射于處理過的汽缸表面,形成一層具有所需性能的塗層方法。其特點就是設備簡單,操作方便塗層牢固,噴塗後汽缸溫度僅為70℃—80℃不會使汽缸産生變形,而且可獲得耐熱,耐磨,抗腐蝕的塗層。注意的是在塗渡和噴塗前都要對缸面進行打磨、除油、拉毛,在塗渡和噴塗後要對塗層進行研刮,保證結合面的嚴密。

5.結合面加墊的方法

如果結合面的局部間隙洩漏不是很大,可用80—100目的銅網經熱處理使其硬度降低,然後剪成适當的形狀,鋪在結合面的漏汽處,再配以汽缸密封劑。如果結合面的間隙較大,洩漏嚴重,可在上下結合面開寬50mm深5mm的槽,中間鑲嵌IGr18Ni9Ti的齒形墊,齒形墊的厚度一般比槽的深度大0.05—0.08mm左右,并可用同等形狀的不鏽鋼墊片做以調整。

6.控制螺栓應力的方法

如果汽缸結合面的變形較小,而且很均勻,可在有間隙處更換新的螺栓,或是适當的加大螺栓的預緊力。按從中間向兩邊同時緊固,也就是從垂弧最大處或是受力變形最大的地方緊固螺栓。理論上來說,控制螺栓的預緊力可用公式d/L≤A來計算,但由于此計算的數據與測量的手段還在研究當中,沒有達到推廣,多在螺栓的允許的最大應力内根據經驗而定。

7.新時期采用的高分子材料方法

随着技術的進一步發展,高分子複合材料逐漸在氣缸維護中取得了成功的應用。相對于傳統手段相比,高分子複合材料具有較為優異的耐溫性能,良好的耐壓性能,以及更為出色的密封性能,且具有良好的塑變性,受熱不會固化,密封膜不會被破壞,從而保證了機件密封面的密封;加之易于清除,使用過的密封面可以用無水乙醇或丙酮輕易的擦去,而不會附着于密封面;由于其優異的性能,逐漸受到越來越多氣缸企業的青睐。

常見故障分析與排除方法

故障

原因分析

排除方法

外 洩

活塞杆端漏氣

活塞杆安裝偏心

潤滑油供應不足

活塞密封圈磨損

活塞杆軸承配合面有雜質

活塞杆有傷痕

重新安裝調整,使活塞杆不受偏心和橫向負荷。

檢查油霧器是否失靈。

更換密封圈。

清洗除去雜質,安裝更換防塵罩。

更換活塞杆。

缸筒與缸蓋間漏氣

緩沖調節處漏氣

活塞兩端串氣

活塞密封圈損壞

潤滑不良

活塞被卡住,活塞配合面有缺陷。

雜質擠入密封面

更換密封

檢查油霧器是否失靈

重新安裝調整,使活塞杆不受偏心和橫向負荷。

除去雜質,采用淨化壓縮空氣。

輸出力不足

動作不平穩

潤滑不良

活塞或活塞杆卡住

供氣流量不足

有冷凝水雜質

檢查油霧器是否失靈

重新安裝調整,消除偏心橫向負荷。

加大連接或管接頭口徑

注意用淨化幹燥壓縮空氣,防止水凝結。

緩沖效果不良

緩沖密封圈磨損

調節螺釘損壞

汽缸速度太快

更換密封圈

更換調節螺釘

注意緩沖機構是否适合

損傷

活塞杆損壞

有偏心橫向負荷

活塞杆受沖擊負荷

氣缸的速度太快

消除偏心橫向負荷

沖擊不能加在活塞杆上

設置緩沖裝置

缸蓋損壞

緩沖機構不起作用

在外部或回路中設置緩沖機構

氣缸與電動執行器的區别

從傳統觀念來看,氣缸與電動執行器一直被認為是屬于兩個完全不同領域的自動化産品,但是近年來,随着電氣化程度的不斷提高,電動執行器卻慢慢浸入氣動領域,二者在應用中既有競争又相互補充。在本期欄目中,我們将從技術性能、購買和應用成本、能源效率、應用場合及市場形勢等幾個方面來對比氣缸與電動執行器各自的優勢

技術性能

衆所周知,相比電動執行器,氣缸可在惡劣條件下可靠地工作,且操作簡單,基本可實現免維護。氣缸擅長作往複直線運動,尤其适于工業自動化中最多的傳送要求——工件的直線搬運。而且,僅僅調節安裝在氣缸兩側的單向節流閥就可簡單地實現穩定的速度控制,也成為氣缸驅動系統最大的特征和優勢。所以對于沒有多點定位要求的用戶,絕大多數從使用便利性角度更傾向于使用氣缸。目前工業現場使用電動執行器的應用大部分都是要求高精度多點定位,這是由于用氣缸難以實現,退而求其次的結果。

而電動執行器主要用于旋轉與擺動工況。其優勢在于響應時間快,通過反饋系統對速度、位置及力矩進行精确控制。但當需要完成直線運動時,需要通過齒形帶或絲杆等機械裝置進行傳動轉化,因此結構相對較為複雜,而且對工作環境及操作維護人員的專業知識都有較高要求。

優勢

(1)對使用者的要求較低。氣缸的原理及結構簡單,易于安裝維護,對于使用者的要求不高。電缸則不同,工程人員必需具備一定的電氣知識,否則極有可能因為誤操作而使之損壞。

(2)輸出力大。氣缸的輸出力與缸徑的平方成正比;而電缸的輸出力與三個因素有關,缸徑、電機的功率和絲杆的螺距,缸徑及功率越大、螺距越小則輸出力越大。一個缸徑為50mm的氣缸,理論上的輸出力可達2000N,對于同樣缸徑的電缸,雖然不同公司的産品各有差異,但是基本上都不超過1000N。顯而易見,在輸出力方面氣缸更具優勢。

(3)适應性強。氣缸能夠在高溫和低溫環境中正常工作且具有防塵、防水能力,可适應各種惡劣的環境。而電缸由于具有大量電氣部件的緣故,對環境的要求較高,适應性較差。

電缸的優勢主要體現在以下3個方面:

(1)系統構成非常簡單。由于電機通常與缸體集成在一起,再加上控制器與電纜,電缸的整個系統就是由這三部分組成的,簡單而緊湊。

(2)停止的位置數多且控制精度高。一般電缸有低端與高端之分,低端産品的停止位置有3、5、16、64個等,根據公司不同而有所變化;高端産品則更是可以達到幾百甚至上千個位置。在精度方面,電缸也具有絕對的優勢,定位精度可達¡0.05mm,所以常常應用于電子、半導體等精密的行業。

(3)柔韌性強。毫無疑問,電缸的柔韌性遠遠強于氣缸。由于控制器可以與PLC直接進行連接,對電機的轉速、定位和正反轉都能夠實現精确控制,在一定程度上,電缸可以根據需要随意進行運動;由于氣體的可壓縮性和運動時産生的慣性,即使換向閥與磁性開關之間配合地再好也不能做到氣缸的準确定位,柔韌性也就無從談起了。

在技術性能方面,本人認為電動和氣動各有所長,首先電動執行器的優勢主要包括:

(1)結構緊湊,體積小巧。比起氣動執行器,電動執行器結構相對簡單,一個基本的電子系統包括執行器,三位置DPDT開關、熔斷器和一些電線,易于裝配。

(2)電動執行器的驅動源很靈活,一般車載電源即可滿足需要,而氣動執行器需要氣源和壓縮驅動裝置。

(3)電動執行器沒有“漏氣”的危險,可靠性高,而空氣的可壓縮性使得氣動執行器的穩定性稍差。

(4)不需要對各種氣動管線進行安裝和維護。

(5)可以無需動力即保持負載,而氣動執行器需要持續不斷的壓力供給。

(6)由于不需要額外的壓力裝置,電動執行器更加安靜。通常,如果氣動執行器在大負載的情況下,要加裝消音器。

(7)電動執行器在控制的精度方面更勝一籌。

(8)氣動裝置中的通常需要把電信号轉化為氣信号,然後再轉化為電信号,傳遞速度較慢,不宜用于元件級數過多的複雜回路。

而氣缸的優勢則在于以下4個方面:

(1)負載大,可以适應高力矩輸出的應用(不過,現在的電動執行器已經逐漸達到目前的氣動負載水平了)。

(2)動作迅速、反應快。

(3)工作環境适應性好,特别在易燃、易爆、多塵埃、強磁、輻射和振動等惡劣工作環境中,比液壓、電子、電氣控制更優越。

(4)行程受阻或閥杆被紮住時電機容易受損。

購買和應用成本比較

從總體上來講,電伺服驅動比氣動伺服驅動要貴,但也要因具體要求及場合而定。有些小功率的直流電機構成電動滑台(電伺服系統)實際上比氣動伺服系統要便宜。

如:當負載為1.5kg、工作行程為80mm、速度在2~170mm/s之間、精度為¡0.1mm、加速度2.5m/s2等工況條件時,FESTO公司采用小型電動滑台、控制器、馬達電纜、控制電纜、編程電纜以及電源電纜等組成的電伺服系統,其價格就比氣動伺服系統便宜25%。同樣,對于帶活塞杆電缸也是如此。需要說明的是如果采用交流電機的話,所組成的電伺服系統的價格要比氣動伺服系統高出40%左右。

從購買和應用成本來看,目前氣缸還是具有比較明顯的優勢的。對于氣動系統來說,控制系統及執行機構都非常簡單,每個氣缸隻需配置一個電磁閥就可完成氣路的切換,進行運動控制,氣缸發生故障的概率也比較小,維護簡單方便,成本也低。

而對于電動執行器來說,雖然電能的獲得比較簡單,能量成本較低,但購買及應用成本較高,不僅需要配置電機,還需要一套機械傳動機構以及相應的驅動元件。同時使用電動執行器需要很多保護措施,錯誤的電路連接、電壓的波動及負載的超載都會對電驅動器造成損壞,因此需要在電路及機械上加裝保護系統,增加了很多額外的費用支出。另外,由于電動執行器驅動單元的參數化設置較多,且集成度高,所以其一旦發生故障,就要更換整個元件。而且當系統需要的驅動力增加時,也要成套更換元件才能實現。因此綜合比較可以看出氣缸在購買及維護成本上有較大優勢。

能源效率比較

我們研究的結果表明,在往複運動周期較短(小于1min)的水平往複運動中,電動執行器的運行能耗通常低于氣缸的運行能耗,即更節能。而在往複運動周期較長(大于1min)時,氣缸竟然變得更節能。這首先是由于終端停止時電動執行器的控制器通常需要消耗約10W的電力,而氣缸僅有電磁閥耗電和氣體洩露,一般低于1W,即終端停止時間越長,對氣缸越有利;其次電機在連續旋轉條件下的額定效率可達90%以上,但在直線往複運動(絲杠轉換)中的台形加減速旋轉條件下的平均效率卻不到50%。在豎直往複運動時,夾持工件的保持動作要求不斷供給電流給電動執行器以克服重力,而氣缸隻需關閉電磁閥即可,耗電極少。因此在豎直往複運動時電動執行器相比氣缸的能耗優勢不是很大。

由上可見,電機本身效率很高,但在往複直線運動中考慮其效率下降及控制器的電力消耗,電動執行器未必一定比氣缸節能,具體比較取決于實際的工作條件,即安裝方向、往複運動周期和負載率等。

應用場合比較

氣動系統和電動系統并不互相排斥。相反,這隻是一個要求不同的問題。氣動驅動器的優勢顯而易見,當面臨諸如灰塵、油脂、水或清潔劑等惡劣的環境條件時,氣動驅動器就顯得較适應惡劣環境,而且非常堅固耐用。氣動驅動器容易安裝,能提供典型的抓取功能,價格便宜且操作方便。

在作用力快速增大且需要精确定位的情況下,帶伺服馬達的電驅動器具有優勢。對于要求精确、同步運轉、可調節和規定的定位編程的應用場合,電驅動器是最好的選擇,帶閉環定位控制器的伺服或步進馬達所組成的電驅動系統能夠補充氣動系統的不足之處。

從技術和使用成本的角度來說,氣缸占有較明顯的優勢,但在實際使用中究竟應該選用哪種技術做驅動控制,還是應從多方因素進行綜合考量。現代控制中各種系統越來越複雜、越來越精細,并不是某種驅動控制技術就可滿足系統的多種控制功能。氣缸可以簡單的實現快速直線循環運動,結構簡單,維護便捷,同時可以在各種惡劣工作環境中使用,如有防爆要求、多粉塵或潮濕的工況。

電動執行器主要用于需要精密控制的應用場合,現在自動化設備中柔性化要求在不斷提升,同一設備往往要求适應不同尺寸工件的加工需要,執行器需要進行多點定位控制,而且要對執行器的運行速度及力矩進行精确控制或同步跟蹤,這些利用傳統氣動控制是無法實現的,而電動執行器就能非常輕松的實現此類控制。由此可見氣缸比較适用于簡單的運動控制,而電執行器則多用于精密運動控制的場合。

市場形勢比較

氣缸驅動系統自70年代以來就在工業自動化領域得到了迅速普及。今天,氣缸已成為國内外工業生産領域中PTP(PointToPoint)搬運的主流執行器,以氣缸驅動系統為核心的氣動元器件市場規模已達到110億美元的規模。

九十年代開始,電機及其微電子控制技術迅速發展,使電動執行器在工業自動化中的應用成為可能。而且,半導體産業的興起也直接促進了能實現高精度多點定位的電動執行器在工業領域應用的擴大。

九十年代末期,日本等主要工業發達國家,甚至一度出現了電動執行器即将取代氣缸,氣缸将退出曆史舞台的論調。因為人們普遍認為電動執行器中電機的能量轉換效率高,而氣缸能量轉換效率較低,低效的産品必将被淘汰出局。然而,十年過去了,電動執行器在工業現場并未得到普及,其市場規模與氣動相比還有很大差距。而且,無論是在工業發達國家,還是在中國等新興工業國家,氣缸的銷量不僅沒有減少,而且還在穩步地增長。在中國,近幾年氣缸銷量的年增長速度一直維持在20%以上。

如需要科學、客觀地評價兩者,必須采用全生命周期評價(LifeCycleAssessment)手法,考慮比較制造階段、使用階段、廢棄階段三個階段的綜合指标。具體指标有成本、能耗、對環境的負擔(主要是排放物等)。譬如成本,電動執行器在運行能耗(使用階段)成本上有優勢,但維護成本(使用階段)和購置成本(制造階段)都比氣缸要高得多,在該指标上的比較應建立在所有成本的總和上。

在總成本上,我們的研究結果表明,氣缸在大多數工業應用場合具有一定優勢。

綜合以上分析,我們應該看出,氣缸與電動執行器各有特點,不可單純地用效率的高低來評價其優劣。随着電氣技術的發展,電動執行器的成本還會進一步下降,預期其應用領域還會進一步拓廣,但要完自吸無堵塞排污泵全取代氣缸是不現實的。

從市場形式來看,前面己經提到若電缸從一開始就參照氣缸的外形及安裝連接尺寸生産,是一個很好的開端。而對于目前還未有ISO标準的無杆氣缸和氣動滑台,則同樣采用相對應的外形及安裝連接尺寸,這個便利的措施能夠杜絕氣驅動與電驅動在安裝、添置或更換方面無謂的競争。FESTO公司的電驅動産品包含了300多種可自由組合的抓取模塊和多軸系統。在Festo,電驅動器不是氣動驅動器的競争産品,而是對氣動驅動器性能的完美補充。電驅動器的特點是精确和靈活。在作用力快速消失和需要精确定位的應用場合,電驅動器是無堵塞自吸排污泵理想的決方案。

因此今後氣缸與電動執行器的發展應該是處于非常良性狀況和互補的,也一定會按照這兩門技術自身的科學自然發展規律發展。

上一篇:紅外線攝像頭

下一篇:馬踏飛燕

相關詞條

相關搜索

其它詞條