乘法公式

乘法公式

把特殊的多項式相乘的結果加以總結直接應用
乘法公式也叫做簡乘公式,就是把一些特殊的多項式相乘的結果加以總結,直接應用.公式中的每一個字母,一般可以表示數字,單項式,多項式,有的還可以推廣到分式,根式。[1]
  • 中文名:乘法公式
  • 外文名:Multiplication formula
  • 别名:
  • 表達式:
  • 提出者:
  • 适用領域:數學代數
  • 又名:簡乘公式
  • 基本公式:完全平方公式,平方差公式

乘法公式

什麼叫乘法公式

1.公式的應用不僅可從左到右的順用(多項式乘法),還可以由右向左逆用(因式分解).

要記住一些重要的公式變形及其逆運算——除法等。

基本公式

2.基本公式就是最常用,最基礎的公式,可以由此而推導出其它公式.

完全平方公式:(a±b)^2=a^2±2ab+b^2,

平方差公式:(a+b)(a-b)=a^2-b^2,

立方和(差)公式:(a±b)(a^2+ab+b^2)=a^3±b^3,

完全立方公式:(a±b)^3=a^3±3a^2b+3ab^2;±b^3,

三數和平方公式:(a+b+c)^2;=a^2;+b^2;+c^2+2ab+2ac+2bc,

歐拉公式:(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=a^3+b^3+c^3-3abc

公式推廣

公式的推廣

①多項式平方公式:(a+b+c+d)^2=a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd。

即:多項式的平方等于各項的平方和,加上每兩項積的2倍。

②二項式定理:(a±b)^3=a^3±3a^2b+3ab^2±b^3,

(a±b)^4=a^4±4a^3b+6a^2b^2±4ab^3+b^4,

(a±b)^5=a^5±5a^4b+10a^3b^2±10a^2b^3+5ab^4±b^5,

…………

(a+b)

=a^n+Cn1*a^(n-1)*b+CN2*a^(n-2)*b……2+……+Cn(n-1)*a*b^(n-1)+b^n.

注意觀察右邊展開式的項數,指數,系數,符号的規律,見楊輝三角。

③由平方差,立方和(差)公式引申的公式

(a+b)(a^3-a^2b+ab^2-b^3)=a^4-^b^4,

(a+b)(a^4-a^3b+a^2b^2-ab^3+b4)=a^5+b^5,

(a+b)(a^5-a^4b+a^3b^2-a^2b^3+ab^4-b^5)=a^6-b^6,

…………

注意觀察左邊第二個因式的項數,指數,系數,符号的規律。

在正整數指數的條件下,可歸納如下:設n為正整數

⑴(a+b)(a2n-1-a2n-2b+a2n-3b2-…+aB2N-2-b2n-1)=a2n-b2n,

⑵(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1,

類似地:

⑶(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)=an-bn。

公式的變形及其逆運算

由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。

由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)。

由公式的推廣可知:當n為正整數時,an-bn能被a-b整除;

a2n+1+b2n+1能被a+b整除;a2n-b2n能被a+b及a-b整除。

乙例題

例1.己知:x+y=a,xy=b。

63

求:①x2+y2;②x3+y3;③x4+y4;④x5+y5.

解:①x2+y2=(x+y)2-2xy=a2-2b;

②x3+y3=(x+y)3-3xy(x+y)=a3-3ab;

③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2;

④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4)

=(x+y)[x4+y4-xy(x2+y2)+x2y2]

=a[a4-4a2b+2b2-b(a2-2b)+b2]

=a5-5a3b+5ab2.

例2.求證:四個連續整數的積加上1的和,一定是整數的平方.

證明:設這四個數分别為a,a+1,a+2,a+3.(a為整數)

a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1

=(a2+3a)(a2+3a+2)+1

=(a2+3a)2+2(a2+3a)+1

=(a2+3a+1)2。

∵a是整數,整數的和,差,積,幂也是整數。∴a2+3a+1是整數。

例3.求證:2^222+3^111能被7整除。證明:2^222+3^111=(2×2)^111+3^111=4^111+3^111。

∵a^(2n+1)+b^(2n+1)能被a+b整除,(見内容提要4)

∴4^111+3^111能被4+3整除。

∴2^222+3^111能被7整除。

(擴展)快速判斷一個整數是否可以整除另一個整數

如x=2368,則x1=8,x2=6,x3=3,x4=2

則有如下公式:

x%m=(x1+101%m*x2+102%m*x3+……+10n-1%m*xn)%m

其中%表示求餘數的符号

公式證明

依據餘數的兩個定理

(m+n)%k=(m%k+n%k)%k(結合率)

(m*n)%k=((m%k)*n)%k(交換率)

則x%m

= (x1 + x2*10 + x3*102 +xn*10n-1)%m

= (x1%m+ x2*10%m+ x3*102%m +xn*10n-1%m)%m

= (x1%m+ (10%m*x2)%m + (102%m*x3)%m +(10n-1%m*xn)%m)%m

= (x1 + 10%m*x2+ 102%m*x3 +10n-1%m*xn)%m

所以公式得證

例4.用完全平方公式推導“個位數字為5的兩位數的平方數”的計算規律。

解:∵(10a+5)^2=100a^2+2×10a×5+25=100a(a+1)+25。

∴“個位數字為5的兩位數的平方數”的特點是:

幂的末兩位數字是底數的個位數字5的平方,幂的百位以上的數字是底數的十位上數

字a乘以(a+1)的積。

例如:15^2=225,幂的百位上的數字2=1×2;

25^2=625,6=2×3;

35^2=1225,12=3×4;

……

105^2=11025,110=10×11。

1、平方差公式

由多項式乘法得到(a+b)(a——b)=a²——b².即兩個數的和與這兩個數的差的積等于這兩個數的平方差

2、平方差公式的特征

①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數;

②右邊是乘式中兩項的平方差(相同項的平方減去相反項的平方);

③公式中的a和b可以是具體數,也可以是單項式或多項式;

④對于形如兩數和與這兩數差相乘的形式,就可以運用上述公式來計算.

3、完全平方公式

由多項式乘法得到(a±b)^2=a^2±2ab+b^2即兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.推廣形式:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca

4、完全平方公式的特征

(a+b)^2=a^2+2ab+b^2與(a——b)^2=a^2——2ab+b^2都叫做完全平方公式,為了區别,我們把前者叫做兩數和的完全平方公式,後者叫做兩數差的完全平方公式.

①兩公式的左邊:都是一個二項式的完全平方,二者僅有一個符号不同;右邊:都是二次三項式,其中有兩項是公式左邊兩項中每一項的平方,中間是左邊二項式中兩項乘積的2倍,兩者也僅有一個符号不同.②公式中的a、b可以是數,也可以是單項式或多項式.

③對于形如兩數和(或差)的平方的乘法,都可以運用上述公式計算.

④公式中的字母具有一般性,它可以表示數也可以表示多項式.

5、乘法公式的主要變式

(1)a2——b2=(a+b)(a——b);

(2)(a+b)2——(a——b)2=4ab;

(3)(a+b)2+(a——b)2=2(a2+b2);

(4)a2+b2=(a+b)2——2ab=(a——b)2+2ab

(5)a3+b3=(a+b)3——3ab(a+b)

(6)a^n-1=(a-1)(a^(n-1)+a^(n-2)+.....+a+1)

熟悉這些變形公式,明确它們間聯系,綜合運用,常可簡化解題過程.

注意:

(1)公式中的a,b既可以表示單項式,也可以表示多項式.

(2)乘法公式既可以單獨使用,也可以同時使用.

(3)這些公式既可以正用,也可以逆用,因此在解題時應靈活地運用公式,以計算簡捷為宜.

計算:

(1)(3a+2b)(2b——3a);(2)(x——2y)(——x——2y);(3)(a+b+c)(a——b——c)分析:

相乘的兩個二項式,隻要它們有一項完全相同,另一項互為相反數,就符合平方差公式.相乘的結果是相同項的平方減去相反項的平方.

第(1)題的相同項是2b,相反項是3a與——3a.

第(2)題可以按第(1)題的方法計算,也可以先改變第二個因式的符号再運算.

第(3)題雖然不能直接運用平方差公式計算,但認真觀察兩個二項式中的相同項和相反項,就不難分組轉化成平方差公式的結構形式.

解:

(1)原式=(2b+3a)(2b——3a)

=(2b)^2——(3a)^2

=4b^2——9a^2

(2)原式=(——2y+x)(——2y——x)

=(——2y)^2——x^2

=4y2——x2

(3)原式=[a+(b+c)][a——(b+c)]

=a^2——(b+c)^2

=a^2——(b^2+2bc+c^2)

=a^2——b^2——2bc——c^2

(1)98×102;(2)99×101×10001.

分析:

将98寫成100——2,102寫成100+2,第(1)題即能用平方差公式計算;同理将99寫成100——1,101寫成100+1,第(2)題也可用平方差公式計算:

解:

(1)98×102=(100——2)(100+2)

=10000——4=9996

(2)99×101×10001=(100——1)(100+1)×10001

=(10000——1)(10000+1)

=100000000——1=99999999

上一篇:柯西積分公式

下一篇:直角三角形斜邊中線定理

相關詞條

相關搜索

其它詞條